Measurement and Calculation of the Impedance of an Eddy Current Probe Placed Above a Disc with Two Layers of Different Diameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model
2.2. Measurement System
3. Results and Discussion
- -
- The inner radius of the coil r1;
- -
- The outer radius of the coil r2;
- -
- The distance of the coil from the conducting disc (lift-off) z1;
- -
- The height of coil z2−z1;
- -
- The electrical conductivity σ1;
- -
- The thickness of the upper disc layer b1.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Praphaphankul, N.; Akutsu, A.; Sasaki, E. Numerical study for development of subsurface crack detection using pulsed eddy current and swept frequency eddy current. Struct. Infrastruct. Eng. 2025, 21, 477–492. [Google Scholar] [CrossRef]
- Tytko, G.; Dziczkowski, L.; Magnuski, M.; Zhang, Z.; Luo, Y. Eddy current testing of conductive discs using the pot-core sensor. Sens. Actuators A Phys. 2023, 349, 114060. [Google Scholar] [CrossRef]
- Li, C.; Guo, Z.; Zhen, M.; Liu, L.; Xu, A.; Xue, W.; Gao, L.; Xiong, J. A Non-Contact Rotational Speed Sensor for Bearing Cages in a High-Temperature and High-Speed Environment. IEEE Sens. J. 2024, 24, 22773–22780. [Google Scholar] [CrossRef]
- Ma, H.; Wang, D.; Zhang, Z.; Yin, W.; Chen, H.; Zhou, G. A simple conductivity measurement method using a peak-frequency feature of ferrite-cored eddy current sensor. NDT E Int. 2024, 142, 103024. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, H.; Qu, Z.; Zhu, C.; Wang, X. Nondestructive Testing of Local Incomplete Brazing Defect in Stainless Steel Core Panel Using Pulsed Eddy Current. Materials 2022, 15, 5689. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Z.; Zhou, Z.; Jin, J.; Hu, Z. Study on the Effect of Metal Mesh on Pulsed Eddy-Current Testing of Corrosion under Insulation Using an Early-Phase Signal Feature. Materials 2023, 16, 1451. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, X.; Liu, B.; Li, Z.; Luo, Z.; Xu, Z. Inspection of Liner Wall Thinning and Interface Debonding in Bimetallic Lined Pipes Using Pulsed Eddy Current Testing. Materials 2024, 17, 2652. [Google Scholar] [CrossRef]
- Jin, Z.; Meng, Y.; Yu, R.; Huang, R.; Lu, M.; Xu, H.; Meng, X.; Zhao, Q.; Zhang, Z.; Peyton, A. Methods of controlling lift-off in conductivity invariance phenomenon for eddy current testing. IEEE Access 2020, 8, 122413–122421. [Google Scholar] [CrossRef]
- Poletkin, K.; Babic, S. Calculation of Magnetic Stiness over Torque between Two Current-Carrying Circular Filaments Arbitrarily Positioning in the Space. J. Magn. Magn. Mater. 2024, 603, 172202. [Google Scholar] [CrossRef]
- Łukaszuk, R.; Chady, T. Nondestructive Examination of Carbon Fiber-Reinforced Composites Using the Eddy Current Method. Materials 2023, 16, 506. [Google Scholar] [CrossRef]
- Sepehri, S.; Trey, S.; Lake, K.; Cumming, C.; Johansson, C. Non-Destructive Evaluation of Thermal Aging in EPDM Rubber Using Electromagnetic Techniques. Materials 2023, 16, 5471. [Google Scholar] [CrossRef] [PubMed]
- Grochowalski, J.M.; Chady, T. Rapid Identification of Material Defects Based on Pulsed Multifrequency Eddy Current Testing and the k-Nearest Neighbor Method. Materials 2023, 16, 6650. [Google Scholar] [CrossRef] [PubMed]
- Abiru, Y.; Nishiguchi, H.; Maekawa, M.; Nagata, T.; Itaya, T.; Koga, M.; Nishi, T. Hydrogen Embrittlement Detection Technology Using Nondestructive Testing for Realizing a Hydrogen Society. Materials 2024, 17, 4237. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, H.; Zhu, X.; Zeng, H.; Xu, Z. Pulsed Eddy Current Imaging of Partially Missing Solder in Brazing Joints of Stainless Steel Core Plates. Materials 2024, 17, 5561. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, Y.; Wang, K.; Song, Y.; Feng, B.; Kang, Y.; Duan, Z. Bottom Crack Detection with Real-Time Signal Amplitude Correction Using EMAT-PEC Composite Sensor. Sensors 2024, 24, 5196. [Google Scholar] [CrossRef]
- Carere, F.; Sardellitti, A.; Bernieri, A.; Ferrigno, L.; Sangiovanni, S.; Laracca, M. An eddy current probe for the detection of sub-superficial defects of any orientation. IEEE Trans. Instrum. Meas. 2024, 73, 6006313. [Google Scholar] [CrossRef]
- Huang, R.; Lu, M.; Zhang, Z.; Zhao, Q.; Xie, Y.; Tao, Y.; Meng, T.; Peyton, A.; Yin, W. Measurement of the radius of metallic plates based on a novel finite region eigenfunction expansion (FREE) method. IEEE Sens. J. 2020, 20, 15099–15106. [Google Scholar] [CrossRef]
- Vasić, D.; Rep, I.; Špikić, D.; Kekelj, M. Model of magnetically shielded ferrite-cored eddy current sensor. Sensors 2022, 22, 326. [Google Scholar] [CrossRef]
- Wang, W.; Lv, K.; Du, Z.; Chen, W.; Pang, Z. Effect of Discharge Energy on Micro-Arc Oxidation Coating of Zirconium Alloy. Materials 2024, 17, 3166. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Q.; Peng, L.; Huang, S.; Ye, C. A Precise Oxide Film Thickness Measurement Method Based on Swept Frequency and Transmission Cable Impedance Correction. Sensors 2025, 25, 579. [Google Scholar] [CrossRef]
- Huang, P.; Long, J.; Jia, J.; Liu, K.; Yu, X.; Xu, L.; Xie, Y. Measurement of conductivity and diameter of metallic rods using eddy current testing. Measurement 2023, 221, 113496. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Yin, W. A Novel Conductivity Classification Technique for Nonmagnetic Metal Immune to Tilt Variations Using Eddy Current Testing. IEEE Access 2021, 9, 135334. [Google Scholar] [CrossRef]
- Huang, P.; Bao, Z.; Pu, H.; Huang, X.; Xu, L.; Xie, Y. Extraction of LIF features using sweep-frequency eddy current for conductivity and thickness evaluation of non-magnetic metallic plates. Measurement 2023, 208, 112444. [Google Scholar] [CrossRef]
- Rauh, S.; Prabhu, S.D.; Wolf, G.; Fischer, L.; Hempel, N.; Mayr, P. Laser Powder Bed Fusion of Copper–Tungsten Powders Manufactured by Milling or Co-Injection Atomization Process. Materials 2024, 17, 4394. [Google Scholar] [CrossRef]
- Zhao, G.; Huang, Y.; Zhang, W.; Wang, C.; Chen, J. Advances in high-precision displacement and thickness measurement based on eddy current sensors: A review. Measurement 2025, 243, 116410. [Google Scholar] [CrossRef]
- Huang, P.; Zhao, J.; Li, Z.; Pu, H.; Ding, Y.; Xu, L.; Xie, Y. Decoupling conductivity and permeability using sweep-frequency eddy current method. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Lu, M.; Meng, X.; Huang, R.; Chen, L.; Peyton, A.; Yin, W. A high-frequency phase feature for the measurement of magnetic permeability using eddy current sensor. NDT E Int. 2021, 123, 102519. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, Y.; Shi, Q.; Guo, J. 2-D Analytical Model of Sinusoidal Eddy Current Field Based on Permeability Distortion. IEEE Sens. J. 2024, 24, 14392. [Google Scholar] [CrossRef]
- Huang, R.; Lu, M.; Chen, Z.; Shao, Y.; Xia, Z.; Hu, G.; Peyton, A.; Yin, W. A novel acceleration method for crack computation using finite element analysis in eddy current testing. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Feng, B.; Xie, S.; Xie, L.; Deng, K.; Wang, S.; Kang, Y. Analysis of the lift-off effect in motion-induced eddy current testing based on semi-analytical model. IEEE Trans. Instrum. Meas. 2023, 73, 6002008. [Google Scholar] [CrossRef]
- Bao, Y.; Liu, Z.; Song, J. Adaptive cross approximation algorithm for accelerating BEM in eddy current nondestructive evaluation. J. Nondestruct. Eval. 2018, 37, 68. [Google Scholar] [CrossRef]
- Bao, Y.; Gurrala, P.; Song, J. Element Discretization Effects on Boundary Element Method Modeling for Eddy Current Nondestructive Evaluation Problems. J. Nondestruct. Eval. 2021, 40, 79. [Google Scholar] [CrossRef]
- Dodd, C.V.; Deeds, W.E. Analytical solutions to eddy-current probe-coil problems. J. Appl. Phys. 1968, 39, 2829–2838. [Google Scholar] [CrossRef]
- Dodd, C.V.; Luquire, J.W.; Deeds, W.E.; Spoeri, W.G. Some Eddy-Current Problems and Their Integral Solutions, Oak Ridge National Lab. (ORNL-4384); Oak Ridge National Lab.: Oak Ridge, TN, USA, 1969. [Google Scholar] [CrossRef]
- Theodoulidis, T.; Kriezis, E. Series expansions in eddy current nondestructive evaluation models. J. Mater. Process. Technol. 2005, 161, 343–347. [Google Scholar] [CrossRef]
- Theodoulidis, T.P.; Kriezis, E.E. Eddy Current Canonical Problems (With Applications to Nondestructive Evaluation); Tech Science Press: Duluth, GA, USA, 2006. [Google Scholar]
- Vasić, D.; Ambruš, D.; Bilas, V. Computation of the eigenvalues for bounded domain eddy-current models with coupled regions. IEEE Trans. Magn. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Y.; Kyrgiazoglou, A.; Tytko, G.; Theodoulidis, T. An analytical model of an eddy-current coil near the edge of a conductive plate. IET Electr. Power Appl. 2022, 16, 1017–1029. [Google Scholar] [CrossRef]
- Theodoulidis, T.; Skarlatos, A.; Tytko, G. Computation of eigenvalues and eigenfunctions in the solution of eddy current problems. Sensors 2023, 23, 3055. [Google Scholar] [CrossRef]
- Tytko, G. Locating defects in conductive materials using the eddy current model of the filamentary coil. J. Nondestruct. Eval. 2021, 40, 66. [Google Scholar] [CrossRef]
- Zhang, S. Investigation of Flux Transfer along Ferrite Core of Probe Coil for Eddy Current Nondestructive Evaluation. Meas. Sci. Rev. 2023, 23, 11–18. [Google Scholar] [CrossRef]
- Zhang, S. Analytical Model of an E-core Driver-pickup Coils Probe Applied to Eddy Current Testing of Multilayer Conductor. Appl. Comput. Electromagn. Soc. J. (ACES) 2023, 38, 914–921. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, X. Impedance variation in a coaxial coil encircling a metal tube adapter. Sensors 2023, 23, 8302. [Google Scholar] [CrossRef] [PubMed]
- Tytko, G. Eddy current testing of small radius conductive cylinders with the employment of an I-core sensor. Measurement 2021, 186, 110219. [Google Scholar] [CrossRef]
- Tytko, G. Measurement of multilayered conductive discs using eddy current method. Measurement 2022, 204, 112053. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, C. Model of ferrite-cored driver-pickup coil probe application of TREE method for eddy current nondestructive evaluation. Appl. Comput. Electromagn. Soc. J. (ACES) 2022, 37, 632–638. [Google Scholar] [CrossRef]
- Wang, R.; Yu, H.; Tang, J.; Feng, B.; Kang, Y.; Song, K. Optimal design of iron-cored coil sensor in magnetic flux leakage detection of thick-walled steel pipe. Meas. Sci. Technol. 2023, 34, 085123. [Google Scholar] [CrossRef]
- Zhang, S. Modeling of a Novel T-Core Sensor with an Air Gap for Applications in Eddy Current Nondestructive Evaluation. Sensors 2024, 24, 7931. [Google Scholar] [CrossRef]
- Bayani, H.; Theodoulidis, T.; Sasada, I. Solution to the problem of cup-cored coil above a layered half-space. Iran. Phys. J. 2008, 2, 49–53. [Google Scholar]
- Sakkaki, F.; Bayani, H. Solution to the problem of E-cored coil above a layered half-space using the method of truncated region eigenfunction expansion. J. Appl. Phys. 2012, 111, 07E717. [Google Scholar] [CrossRef]
- Ou, Z.; Dong, S.; Xu, C.; Cen, J.; Han, Z. A pot-core eddy current sensor based on DC magnetization. J. Phys. Conf. Ser. 2023, 2591, 012047. [Google Scholar] [CrossRef]
- Sardellitti, A.; Milano, F.; Laracca, M.; Ferrigno, L.; Tamburrino, A.; Tian, G.Y. Enhancing corrosion detection and characterization: An innovative approach with Pot-Cored Eddy Current probe. IEEE Trans. Instrum. Meas. 2025, 74, 6004113. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Z.; Liang, Z.; Peng, F.; Yi, Q.; Tian, G. Microdefect Detection and Characterization Using Pot-Core Coils and LDC. IEEE Sens. J. 2025, 25, 13894–13903. [Google Scholar] [CrossRef]
Parameter | Symbol | Coil C1 | Coil C2 |
---|---|---|---|
Number of turns | N | 480 | 1650 |
Inner radius | r 1 | 2.6 mm | 2.0 mm |
Outer radius | r 2 | 7.8 mm | 7.3 mm |
Height | z2−z1 | 15.8 mm | 5.4 mm |
Set | Layer | Conductive Material | Radius [mm] | Thickness [mm] | Electrical Conductivity [MS/m] |
---|---|---|---|---|---|
1 | Upper | Brass | 19.97 | 4.83 | 14.22 |
1 | Lower | Bronze CC481K | 29.81 | 2.07 | 6.09 |
2 | Upper | Graphite | 15.01 | 2.13 | 0.45 |
2 | Lower | Bronze CW452K | 25.21 | 5.04 | 9.48 |
3 | Upper | Graphite | 15.08 | 5.02 | 0.45 |
3 | Lower | Bronze CC481K | 29.79 | 2.04 | 6.09 |
Measurement | Analytical Method | ||||||
---|---|---|---|---|---|---|---|
Coil | f [kHz] | ΔR [Ω] | ΔX [Ω] | ΔR [Ω] | ΔX [Ω] | ΔR [%] | ΔX [%] |
C1 | 1 | 0.212 | −0.255 | 0.210 | −0.262 | 0.94 | −2.75 |
C1 | 5 | 0.890 | −2.355 | 0.888 | −2.408 | 0.22 | −2.25 |
C1 | 10 | 1.513 | −5.473 | 1.490 | −5.590 | 1.52 | −2.14 |
C2 | 1 | 7.49 | −7.18 | 7.57 | −7.36 | −1.07 | −2.51 |
C2 | 5 | 41.18 | −83.41 | 40.50 | −84.33 | 1.65 | −1.10 |
C2 | 10 | 73.43 | −205.09 | 71.50 | −206.59 | 2.63 | −0.73 |
Measurement | Analytical Method | ||||||
---|---|---|---|---|---|---|---|
Coil | f [kHz] | ΔR [Ω] | ΔX [Ω] | ΔR [Ω] | ΔX [Ω] | ΔR [%] | ΔX [%] |
C1 | 1 | 0.114 | −0.117 | 0.111 | −0.120 | 2.63 | −2.56 |
C1 | 5 | 0.473 | −1.123 | 0.461 | −1.149 | 2.54 | −2.32 |
C1 | 10 | 0.912 | −2.615 | 0.892 | −2.672 | 2.19 | −2.18 |
C2 | 1 | 3.05 | −2.70 | 3.13 | −2.79 | −2.62 | −3.33 |
C2 | 5 | 16.64 | −31.71 | 17.01 | −32.34 | −2.22 | −1.99 |
C2 | 10 | 34.64 | −77.87 | 34.88 | −79.20 | −0.69 | −1.71 |
Measurement | Analytical Method | ||||||
---|---|---|---|---|---|---|---|
Coil | f [kHz] | ΔR [Ω] | ΔX [Ω] | ΔR [Ω] | ΔX [Ω] | ΔR [%] | ΔX [%] |
C1 | 1 | 0.060 | −0.024 | 0.059 | −0.024 | 1.67 | 0.00 |
C1 | 5 | 0.462 | −0.576 | 0.451 | −0.587 | 2.38 | −1.91 |
C1 | 10 | 1.032 | −1.463 | 1.017 | −1.485 | 1.45 | −1.50 |
C2 | 1 | 1.44 | −0.47 | 1.40 | −0.48 | 2.78 | −2.13 |
C2 | 5 | 14.39 | −13.20 | 14.02 | −13.44 | 2.57 | −1.82 |
C2 | 10 | 36.42 | −36.46 | 35.70 | −36.95 | 1.98 | −1.34 |
r1 [mm] | ΔR [Ω] | ΔX [Ω] | r2 [mm] | ΔR [Ω] | ΔR [Ω] | z1 [mm] | ΔR [Ω] | ΔX [Ω] |
---|---|---|---|---|---|---|---|---|
2.0 | 1.27 | −4.74 | 6.0 | 0.95 | −3.16 | 0.0 | 1.82 | −6.55 |
2.2 | 1.34 | −5.01 | 6.2 | 1.01 | −3.38 | 0.4 | 1.49 | −5.59 |
2.4 | 1.41 | −5.29 | 6.4 | 1.07 | −3.62 | 0.8 | 1.23 | −4.80 |
2.6 | 1.49 | −5.59 | 6.6 | 1.13 | −3.86 | 1.2 | 1.02 | −4.16 |
2.8 | 1.57 | −5.90 | 6.8 | 1.19 | −4.12 | 1.6 | 0.85 | −3.61 |
3.0 | 1.65 | −6.23 | 7.0 | 1.25 | −4.39 | 2.0 | 0.72 | −3.16 |
3.2 | 1.73 | −6.57 | 7.2 | 1.31 | −4.67 | 2.4 | 0.61 | −2.78 |
3.4 | 1.81 | −6.93 | 7.4 | 1.37 | −4.97 | 2.8 | 0.52 | −2.45 |
3.6 | 1.90 | −7.30 | 7.6 | 1.43 | −5.27 | 3.2 | 0.45 | −2.17 |
3.8 | 1.99 | −7.69 | 7.8 | 1.49 | −5.59 | 3.6 | 0.38 | −1.93 |
4.0 | 2.07 | −8.10 | 8.0 | 1.55 | −5.92 | 4.0 | 0.33 | −1.72 |
5.0 | 2.54 | −10.36 | 9.0 | 1.87 | −7.73 | 6.0 | 0.17 | −1.02 |
6.0 | 3.03 | −13.01 | 10.0 | 2.21 | −9.80 | 8.0 | 0.10 | −0.63 |
z2−z1 [mm] | ΔR [Ω] | ΔX [Ω] | σ1 [MS/m] | ΔR [Ω] | ΔR [Ω] | b1 [mm] | ΔR [Ω] | ΔX [Ω] |
---|---|---|---|---|---|---|---|---|
10.0 | 3.29 | −11.31 | 1 | 1.569 | −2.108 | 0.4 | 1.97 | −5.40 |
10.4 | 3.10 | −10.73 | 5 | 1.890 | −4.363 | 0.6 | 1.83 | −5.57 |
10.8 | 2.92 | −10.19 | 10 | 1.643 | −5.222 | 0.8 | 1.72 | −5.65 |
11.2 | 2.76 | −9.69 | 15 | 1.466 | −5.641 | 1.0 | 1.63 | −5.69 |
11.6 | 2.61 | −9.23 | 20 | 0.012 | −7.698 | 2.0 | 1.46 | −5.63 |
12.0 | 2.47 | −8.79 | 25 | 0.011 | −7.698 | 3.0 | 1.48 | −5.59 |
12.4 | 2.34 | −8.38 | 30 | 0.011 | −7.697 | 4.0 | 1.49 | −5.59 |
12.8 | 2.22 | −8.01 | 35 | 0.010 | −7.697 | 5.0 | 1.49 | −5.59 |
13.2 | 2.11 | −7.65 | 40 | 0.010 | −7.697 | 6.0 | 1.49 | −5.59 |
13.6 | 2.01 | −7.32 | 45 | 0.010 | −7.697 | 7.0 | 1.49 | −5.59 |
14.0 | 1.91 | −7.01 | 50 | 0.009 | −7.697 | 8.0 | 1.49 | −5.58 |
16.0 | 1.52 | −5.70 | 55 | 0.009 | −7.697 | 9.0 | 1.49 | −5.58 |
18.0 | 1.24 | −4.72 | 60 | 0.009 | −7.697 | 10.0 | 1.49 | −5.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Tytko, G.; Luo, Y.; Makowska, J. Measurement and Calculation of the Impedance of an Eddy Current Probe Placed Above a Disc with Two Layers of Different Diameters. Materials 2025, 18, 2376. https://doi.org/10.3390/ma18102376
Xiang Y, Tytko G, Luo Y, Makowska J. Measurement and Calculation of the Impedance of an Eddy Current Probe Placed Above a Disc with Two Layers of Different Diameters. Materials. 2025; 18(10):2376. https://doi.org/10.3390/ma18102376
Chicago/Turabian StyleXiang, Yike, Grzegorz Tytko, Yao Luo, and Jolanta Makowska. 2025. "Measurement and Calculation of the Impedance of an Eddy Current Probe Placed Above a Disc with Two Layers of Different Diameters" Materials 18, no. 10: 2376. https://doi.org/10.3390/ma18102376
APA StyleXiang, Y., Tytko, G., Luo, Y., & Makowska, J. (2025). Measurement and Calculation of the Impedance of an Eddy Current Probe Placed Above a Disc with Two Layers of Different Diameters. Materials, 18(10), 2376. https://doi.org/10.3390/ma18102376