Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Coating and Quaternization Process
2.3. Cell Viability
2.4. Scanning Electron Microscopy
2.5. Data Analysis
3. Results
3.1. Cell Viability
3.2. Cell Attachment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaviria, L.; Salcido, J.P.; Guda, T.; Ong, J.L. Current trends in dental implants. J. Korean Assoc. Oral Maxillofac. Surg. 2014, 40, 50. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Gupta, N.; Weber, D.D. Dental Implants. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of dental implant surface modifications on osseointegration. BioMed Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-K.; Choi, W.-Y.; Choi, D.-S.; Jang, I. Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: A pilot in vivo study. Int. J. Nanomed. 2015, 10, 1145–1154. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Malcangi, G.; Ferrante, L.; Del Vecchio, G.; Viapiano, F.; Inchingolo, A.D.; Mancini, A.; Annicchiarico, C.; Inchingolo, F.; Dipalma, G.; et al. Surface Coatings of Dental Implants: A Review. J. Funct. Biomater. 2023, 14, 287. [Google Scholar] [CrossRef]
- Khaw, J.S.; Bowen, C.R.; Cartmell, S.H. Effect of TiO2 nanotube pore diameter on human mesenchymal stem cells and human osteoblasts. Nanomaterials 2020, 10, 2117. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Shivaram, A.; Mitra, I.; Bose, S. Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration. Acta Biomater. 2019, 96, 686–693. [Google Scholar] [CrossRef]
- Howe, M.-S.; Keys, W.; Richards, D. Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. J. Dent. 2019, 84, 9–21. [Google Scholar] [CrossRef]
- Hsu, S.M.; Fares, C.; Xia, X.; Rasel, M.A.; Ketter, J.; Afonso Camargo, S.E.; Haque, M.A.; Ren, F.; Esquivel-Upshaw, J.F. In vitro corrosion of SiC-coated anodized Ti nano-tubular surfaces. J. Funct. Biomater. 2021, 12, 52. [Google Scholar] [CrossRef]
- Calderon, P.d.S.; Rocha, F.R.G.; Xia, X.; Camargo, S.E.A.; Pascoal, A.L.d.B.; Chiu, C.-W.; Ren, F.; Ghivizzani, S.; Esquivel-Upshaw, J.F. Effect of Silicon Carbide Coating on Osteoblast Mineralization of Anodized Titanium Surfaces. J. Funct. Biomater. 2022, 13, 247. [Google Scholar] [CrossRef]
- Camargo, S.E.A.; Roy, T.; Xia, X.; Fares, C.; Hsu, S.-M.; Ren, F.; Clark, A.E.; Neal, D.; Esquivel-Upshaw, J.F. Novel coatings to minimize corrosion of titanium in oral biofilm. Materials 2021, 14, 342. [Google Scholar] [CrossRef]
- Michelle Morcos, R.; Mera, G.; Navrotsky, A.; Varga, T.; Riedel, R.; Poli, F.; Müller, K. Enthalpy of formation of carbon-rich polymer-derived amorphous SiCN ceramics. J. Am. Ceram. Soc. 2008, 91, 3349–3354. [Google Scholar] [CrossRef]
- Kaloyeros, A.E.; Jové, F.A.; Goff, J.; Arkles, B. Silicon nitride and silicon nitride-rich thin film technologies: State-of-the-art processing technologies, properties, and applications. ECS J. Solid State Sci. Technol. 2020, 9, 063006. [Google Scholar] [CrossRef]
- Pettersson, M.; Berlind, T.; Schmidt, S.; Jacobson, S.; Hultman, L.; Persson, C.; Engqvist, H. Structure and composition of silicon nitride and silicon carbon nitride coatings for joint replacements. Surf. Coat. Technol. 2013, 235, 827–834. [Google Scholar] [CrossRef]
- Waßmann, M.; Winkel, A.; Haak, K.; Dempwolf, W.; Stiesch, M.; Menzel, H. Influence of quaternization of ammonium on antibacterial activity and cytocompatibility of thin copolymer layers on titanium. J. Biomater. Sci. Polym. Ed. 2016, 27, 1507–1519. [Google Scholar] [CrossRef]
- Carey, P.H., IV; Ren, F.; Jia, Z.; Batich, C.D.; Camargo, S.E.A.; Clark, A.E.; Craciun, V.; Neal, D.W.; Esquivel-Upshaw, J.F. Antibacterial properties of charged TiN surfaces for dental implant application. ChemistrySelect 2019, 4, 9185–9189. [Google Scholar] [CrossRef]
- Camargo, S.E.A.; Roy, T.; Iv, P.H.C.; Fares, C.; Ren, F.; Clark, A.E.; Esquivel-Upshaw, J.F. Novel coatings to minimize bacterial adhesion and promote osteoblast activity for titanium implants. J. Funct. Biomater. 2020, 11, 42. [Google Scholar] [CrossRef]
- Chiang, C.C.; Xia, X.; Craciun, V.; Rocha, M.G.; Camargo, S.E.; Rocha, F.R.; Gopalakrishnan, S.K.; Ziegler, K.J.; Ren, F.; Esquivel-Upshaw, J.F. Enhancing the Hydrophobicity and Antibacterial Properties of SiCN-Coated Surfaces with Quaternization to Address Peri-Implantitis. Materials 2023, 16, 5751. [Google Scholar] [CrossRef]
- Accioni, F.; Vázquez, J.; Merinero, M.; Begines, B.; Alcudia, A. Latest trends in surface modification for dental implantology: Innovative developments and analytical applications. Pharmaceutics 2022, 14, 455. [Google Scholar] [CrossRef]
- Donati, M.; Ekestubbe, A.; Lindhe, J.; Wennström, J.L. Marginal bone loss at implants with different surface characteristics-a 20-year follow-up of a randomized controlled clinical trial. Clin. Oral Implant. Res. 2018, 29, 480–487. [Google Scholar] [CrossRef]
- Manoj, A.; Kasar, A.K.; Menezes, P.L. Tribocorrosion of porous titanium used in biomedical applications. J. Bio-Tribo-Corros. 2019, 5, 3. [Google Scholar] [CrossRef]
- Shrestha, A.; Kishen, A. Antibacterial nanoparticles in endodontics: A review. J. Endod. 2016, 42, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Volinsky, R.; Kinnunen, P.K.J. Oxidized phosphatidylcholines in membrane-level cellular signaling: From biophysics to physiology and molecular pathology. FEBS J. 2013, 280, 2806–2816. [Google Scholar] [CrossRef] [PubMed]
- Brender, J.R.; McHenry, A.J.; Ramamoorthy, A. Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front. Immunol. 2012, 3, 31501. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.; Wu, Y.; Wang, D.; Xu, L.; Zhang, Y.; Wang, S.; Wang, T.; Liu, F.; Zaky, M.Y.; et al. Cholesterol content in cell membrane maintains surface levels of ErbB2 and confers a therapeutic vulnerability in ErbB2-positive breast cancer. Cell Commun. Signal. 2019, 17, 15. [Google Scholar] [CrossRef]
- Zhao, X.; Lian, X.; Xie, J.; Liu, G. Accumulated cholesterol protects tumours from elevated lipid peroxidation in the microenvironment. Redox Biol. 2023, 62, 102678. [Google Scholar] [CrossRef]
- Metwally, S.; Stachewicz, U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater. Sci. Eng. C 2019, 104, 109883. [Google Scholar] [CrossRef]
- Nuss, K.M.R.; von Rechenberg, B. Biocompatibility issues with modern implants in bone—A review for clinical orthopedics. Open Orthop. J. 2008, 2, 66–78. [Google Scholar] [CrossRef]
- De’rand, T. Reinforcement of porcelain crowns with silicon carbide fibers. J. Prosthet. Dent. 1980, 43, 40–41. [Google Scholar] [CrossRef]
- Brennan, J.J.; Prewo, K.M. Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness. J. Mater. Sci. 1982, 17, 2371–2383. [Google Scholar] [CrossRef]
- Naji, A.; Harmand, M.-F. Cytocompatibility of two coating materials, amorphous alumina and silicon carbide, using human differentiated cell cultures. Biomaterials 1991, 12, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, N.N.; Vajpai, S.K.; Ameyama, K. Fabrication of Yttria Stabilized Zirconia-Silicon Carbide Composites with High Strength and High Toughness by Spark Plasma Sintering of Mechanically Milled Powders. Mater. Trans. 2014, 55, 1827–1833. [Google Scholar] [CrossRef]
- Gryshkov, O.; Klyui, N.I.; Temchenko, V.P.; Kyselov, V.S.; Chatterjee, A.; Belyaev, A.E.; Lauterboeck, L.; Iarmolenko, D.; Glasmacher, B. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater. Sci. Eng. C 2016, 68, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Chiang, C.-C.; Gopalakrishnan, S.K.; Kulkarni, A.V.; Ren, F.; Ziegler, K.J.; Esquivel-Upshaw, J.F. Properties of SiCN Films Relevant to Dental Implant Applications. Materials 2023, 16, 5318. [Google Scholar] [CrossRef]
Group | 50 nm | 150 nm |
---|---|---|
Non-coated | 0.079 (±0.012) | 0.074 (±0.007) |
SiC-coated | 0.077 (±0.007) | 0.083 (±0.008) |
SicN-coated | 0.086 (±0.014) | 0.079 (±0.006) |
QSiCN-coated | 0.103 (±0.017) | 0.086 (±0.007) |
Surface Modifications | Indication | Currently Being Used | Osseointegrative | Anti-Bacterial | Anti-Corrosive | Disadvantages |
---|---|---|---|---|---|---|
Sand blasting | Improves topography and wettability | Most currently commercialized method together with acid etching | Microspheres of TiO2, Al2O3, SiO2, and HA increase surface roughness and osseointegration | No | No | 20-year follow- did not improve bone healing but increased peri-implantitis and failure |
Acid Etching | Improves topography and wettability | Together with sandblasting, produces SLA surface | Micro-pits surface with immersion in corrosive acids such as HCl, H2SO4, HNO3, and HF | No | No | |
Anodization | Improves topography and wettability | TiUnite® (Nobel Biocare, Gothenburg, Sweden) | Oxidation of Ti surface to increase surface area | No | No | Tribocorrosion has been observed |
Plasma Spraying | Improves biocompatibility and protein absorption | ITI Straumann | Additional layer of OH groups increase osseointegration | No | No | HA debonds with time |
Laser Ablation | Laser-Lok® (BioHorizons, Birmingham, AL, USA). SLActive® (Straumann Institute, Basel, Switzerland) | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Xia, X.; Chiang, C.-C.; Watson Levings, R.S.; Correa, J.; Rocha, F.R.G.; Ghivizzani, S.C.; Ren, F.; Neal, D.; Calderon, P.d.S.; et al. Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants. Materials 2024, 17, 5392. https://doi.org/10.3390/ma17215392
Zhu H, Xia X, Chiang C-C, Watson Levings RS, Correa J, Rocha FRG, Ghivizzani SC, Ren F, Neal D, Calderon PdS, et al. Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants. Materials. 2024; 17(21):5392. https://doi.org/10.3390/ma17215392
Chicago/Turabian StyleZhu, Haochen, Xinyi Xia, Chao-Ching Chiang, Rachael S. Watson Levings, Justin Correa, Fernanda Regina Godoy Rocha, Steve C. Ghivizzani, Fan Ren, Dan Neal, Patricia dos Santos Calderon, and et al. 2024. "Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants" Materials 17, no. 21: 5392. https://doi.org/10.3390/ma17215392
APA StyleZhu, H., Xia, X., Chiang, C.-C., Watson Levings, R. S., Correa, J., Rocha, F. R. G., Ghivizzani, S. C., Ren, F., Neal, D., Calderon, P. d. S., & Esquivel-Upshaw, J. F. (2024). Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants. Materials, 17(21), 5392. https://doi.org/10.3390/ma17215392