Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero, M.; Faccio, R.; Montenegro, B.; Tumelero, M.A.; Cid, C.C.P.; Pasa, A.A.; Mombrú, A.W. Role of conducting polyaniline interphase on the low field magnetoresistance for LSMO-PANI nanocomposites. J. Magn. Magn. Mater. 2018, 466, 446–451. [Google Scholar] [CrossRef]
- Romero, M.; Faccio, R.; Pardo, H.; Tumelero, M.A.; Cid, C.C.P.; Pasa, A.A.; Mombrú, Á.W. Microstructure, interparticle interactions and magnetotransport of manganite-polyaniline nanocomposites. Mater. Chem. Phys. 2016, 171, 178–184. [Google Scholar] [CrossRef]
- Pana, O.; Soran, M.; Leostean, C.; Macavei, S.; Gautron, E.; Teodorescu, C.; Gheorghe, N.; Chauvet, O. Interface charge transfer in polypyrrole coated perovskite manganite magnetic nanoparticles. J. Appl. Phys. 2012, 111, 044309. [Google Scholar] [CrossRef]
- Vinayak, V.V.; Deshmukh, K.; Murthy, V.; Pasha, S.K. Conducting polymer based nanocomposites for supercapacitor applications: A review of recent advances, challenges and future prospects. J. Energy Storage 2024, 100, 113551. [Google Scholar] [CrossRef]
- Snook, G.A.; Kao, P.; Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12. [Google Scholar] [CrossRef]
- Dhandapani, E.; Thangarasu, S.; Ramesh, S.; Ramesh, K.; Vasudevan, R.; Duraisamy, N. Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor—A review. J. Energy Storage 2022, 52, 104937. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Ahmmed, A.S.; Lübben, J.F. Review on conductive polymer composites for supercapacitor applications. J. Compos. Sci. 2024, 8, 53. [Google Scholar] [CrossRef]
- Mahimai, B.M.; Li, E.; Pang, J.; Zhang, J.; Zhang, J. Interface engineering in conducting polymers-based supercapacitor. J. Energy Storage 2024, 96, 112598. [Google Scholar] [CrossRef]
- Wustoni, S.; Ohayon, D.; Hermawan, A.; Nuruddin, A.; Inal, S.; Indartono, Y.S.; Yuliarto, B. Material design and characterization of conducting polymer-based supercapacitors. Polym. Rev. 2024, 64, 192–250. [Google Scholar] [CrossRef]
- Gupta, K.; Jana, P.; Meikap, A.; Nath, T. Synthesis of La0.67Sr0.33MnO3 and polyaniline nanocomposite with its electrical and magneto-transport properties. J. Appl. Phys. 2010, 107, 073704. [Google Scholar] [CrossRef]
- Turcu, R.; Pana, O.; Nan, A.; Craciunescu, I.; Chauvet, O.; Payen, C. Polypyrrole coated magnetite nanoparticles from water based nanofluids. J. Phys. D Appl. Phys. 2008, 41, 245002. [Google Scholar] [CrossRef]
- Amarnath, C.A.; Ghamouss, F.; Schmaltz, B.; Autret-Lambert, C.; Roger, S.; Gervais, F.; Tran-Van, F. Polypyrrole/lanthanum strontium manganite oxide nanocomposites: Elaboration and characterization. Synth. Met. 2013, 167, 18–24. [Google Scholar] [CrossRef]
- Ren, X.; Wang, J.; Yin, H.; Tang, Y.; Fan, H.; Yuan, H.; Cui, S.; Huang, L. Hierarchical CoFe2O4@ PPy hollow nanocubes with enhanced microwave absorption. Appl. Surf. Sci. 2022, 575, 151752. [Google Scholar] [CrossRef]
- Kateb, M.; Safarian, S.; Kolahdouz, M.; Fathipour, M.; Ahamdi, V. ZnO–PEDOT core–shell nanowires: An ultrafast, high contrast and transparent electrochromic display. Sol. Energy Mater. Sol. Cells 2016, 145, 200–205. [Google Scholar] [CrossRef]
- Helli, M.; Sadrnezhaad, S.; Hosseini-Hosseinabad, S.; Vahdatkhah, P. Synthesis and characterization of CuO micro-flowers/PPy nanowires nanocomposites as high-capacity anode material for lithium-ion batteries. J. Appl. Electrochem. 2023, 54, 1–11. [Google Scholar] [CrossRef]
- Yin, Z.; Ding, Y.; Zheng, Q.; Guan, L. CuO/polypyrrole core–shell nanocomposites as anode materials for lithium-ion batteries. Electrochem. Commun. 2012, 20, 40–43. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, X.; Ni, J.; Zhang, S.; Yang, J.; Liu, P.; Wang, Z.; Lei, J. Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode. J. Solid State Electrochem. 2019, 23, 1829–1836. [Google Scholar] [CrossRef]
- Yin, Z.; Fan, W.; Ding, Y.; Li, J.; Guan, L.; Zheng, Q. Shell structure control of PPy-modified CuO composite nanoleaves for lithium batteries with improved cyclic performance. ACS Sustain. Chem. Eng. 2015, 3, 507–517. [Google Scholar] [CrossRef]
- Qian, T.; Zhou, J.; Xu, N.; Yang, T.; Shen, X.; Liu, X.; Wu, S.; Yan, C. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays. Nanotechnology 2015, 26, 425402. [Google Scholar] [CrossRef]
- Ates, M.; Serin, M.A.; Ekmen, I.; Ertas, Y.N. Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym. Bull. 2015, 72, 2573–2589. [Google Scholar] [CrossRef]
- Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Gu, S.; Liu, R.; Wang, X.; Liu, L.; Xu, W. Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 2015, 22, 1355–1363. [Google Scholar] [CrossRef]
- Awad, M.; Nawwar, M.; Zhitomirsky, I. Synergy of Charge Storage Properties of CuO and Polypyrrole in Composite CuO-Polypyrrole Electrodes for Asymmetric Supercapacitor Devices. ACS Appl. Energy Mater. 2024, 7, 5572–5581. [Google Scholar] [CrossRef]
- MacDonald, M.; Zhitomirsky, I. Pseudocapacitive and Magnetic Properties of SrFe12O19–Polypyrrole Composites. J. Compos. Sci. 2024, 8, 351. [Google Scholar] [CrossRef]
- MacDonald, M.; Zhitomirsky, I. Capacitive Properties of Ferrimagnetic NiFe2O4-Conductive Polypyrrole Nanocomposites. J. Compos. Sci. 2024, 8, 51. [Google Scholar] [CrossRef]
- Dmitriev, A.I. Numerical model of a local contact of a polymer nanocomposite and its experimental validation. Facta Univ. Ser. Mech. Eng. 2021, 19, 079–089. [Google Scholar] [CrossRef]
- Wang, K.; Alaluf, D.; Rodrigues, G.; Preumont, A. Precision shape control of ultra-thin shells with strain actuators. J. Appl. Comput. Mech. 2020. [Google Scholar]
- Xia, Q.; Xia, T.; Wu, X. PPy decorated α-Fe2O3 nanosheets as flexible supercapacitor electrodes. Rare Met. 2022, 41, 1195–1201. [Google Scholar] [CrossRef]
- Liu, L.; Hu, X.; Zeng, H.-Y.; Yi, M.-Y.; Shen, S.-G.; Xu, S.; Cao, X.; Du, J.-Z. Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors. J. Mater. Sci. Technol. 2019, 35, 1691–1699. [Google Scholar] [CrossRef]
- Beknalkar, S.A.; Teli, A.M.; Shin, J.C. Current innovations and future prospects of metal oxide electrospun materials for supercapacitor technology: A review. J. Mater. Sci. Technol. 2023, 166, 208–233. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Rong, M.Z.; Zhang, M.Q. Self-healable functional polymers and polymer-based composites. Prog. Polym. Sci. 2023, 144, 101724. [Google Scholar] [CrossRef]
- Yuan, R.; Yin, X.; Gu, S.; Chang, J.; Li, H. Flexible double-wall carbon foam/Cu-Co oxides based symmetric supercapacitor with ultrahigh energy density. J. Mater. Sci. Technol. 2023, 160, 109–117. [Google Scholar] [CrossRef]
- Birajdar, D.; Devatwal, U.; Jadhav, K. X-ray, IR and bulk magnetic properties of Cu1+xMnxFe2–2xO4 ferrite system. J. Mater. Sci. 2002, 37, 1443–1448. [Google Scholar] [CrossRef]
- Marinca, T.F.; Chicinaş, I.; Isnard, O. Structural and magnetic properties of the copper ferrite obtained by reactive milling and heat treatment. Ceram. Int. 2013, 39, 4179–4186. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, B.; Zhang, X.; Zhao, X.; Liu, X.; Wu, S.; Yang, D.-P. Oyster shell-derived CuFe2O4-Hap nanocomposite for healthy houses: Bacterial and formaldehyde elimination. Chem. Eng. J. 2023, 477, 147054. [Google Scholar] [CrossRef]
- Ma, J.; Guo, X.; Ji, X. Amino-functionalized CuFe2O4 supported Pd nanoparticles as magnetically catalyst for H2 production from methanolysis of ammonia borane and hydrogenation of nitro aromatics. Int. J. Hydrogen Energy 2024, 51, 345–356. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Xia, H.; Liu, R.; Wang, H. Fabrication of two novel amino-functionalized and starch-coated CuFe2O4-modified magnetic biochar composites and their application in removing Pb2+ and Cd2+ from wastewater. Int. J. Biol. Macromol. 2024, 258, 128973. [Google Scholar] [CrossRef]
- Mostafa, E.M.; Hammam, R.E. Tailored solar collector coatings: Synthesis and characterization of CuFe2O4/PANI nanocomposites. Opt. Mater. 2024, 156, 115879. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Y.; Hu, X.; Yao, Y.; Li, Z. Tween modified CuFe2O4 nanoparticles with enhanced supercapacitor performance. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127676. [Google Scholar] [CrossRef]
- Liang, W.; Yang, W.; Sakib, S.; Zhitomirsky, I. Magnetic CuFe2O4 nanoparticles with pseudocapacitive properties for electrical energy storage. Molecules 2022, 27, 5313. [Google Scholar] [CrossRef]
- Rushmittha, J.; Radhika, S.; Alrashidi, K.A.; Maheshwaran, G.; Dhinesh, S.; Sambasivam, S. Hybridization of CuFe2O4 by carbon microspheres with improved charge storage characteristics for high energy density solid-state hybrid supercapacitor. Mater. Today Sustain. 2024, 28, 100950. [Google Scholar] [CrossRef]
- Nikam, P.N.; Patil, S.S.; Chougale, U.M.; Bajantri, T.H.; Fulari, A.V.; Fulari, V.J. Synthesis and characterization of CuFe2O4 spinel ferrite for supercapacitor application. J. Indian Chem. Soc. 2024, 101, 101277. [Google Scholar] [CrossRef]
- Mbebou, M.; Polat, S.; Zengin, H. Sustainable cauliflower-patterned CuFe2O4 electrode production from chalcopyrite for supercapacitor applications. Nanomaterials 2023, 13, 1105. [Google Scholar] [CrossRef]
- Sikkema, R.; Zhitomirsky, I. Magnetic supercapacitors: Charge storage mechanisms, magnetocapacitance, and magnetoelectric phenomena. Appl. Phys. Rev. 2023, 10, 021307. [Google Scholar] [CrossRef]
- Ata, M.; Liu, Y.; Zhitomirsky, I. A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. Rsc Adv. 2014, 4, 22716–22732. [Google Scholar] [CrossRef]
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Taberna, P.; Simon, P.; Fauvarque, J.-F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292. [Google Scholar] [CrossRef]
- Al Kiey, S.A.; Ramadan, R.; El-Masry, M.M. Synthesis and characterization of mixed ternary transition metal ferrite nanoparticles comprising cobalt, copper and binary cobalt–copper for high-performance supercapacitor applications. Appl. Phys. A 2022, 128, 473. [Google Scholar] [CrossRef]
- Khairy, M.; Bayoumy, W.; Selima, S.; Mousa, M. Studies on characterization, magnetic and electrochemical properties of nano-size pure and mixed ternary transition metal ferrites prepared by the auto-combustion method. J. Mater. Res. 2020, 35, 2652–2663. [Google Scholar] [CrossRef]
- Berkowitz, A.; Schuele, W.; Flanders, P. Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J. Appl. Phys. 1968, 39, 1261–1263. [Google Scholar] [CrossRef]
- Zan, G.; Li, S.; Chen, P.; Dong, K.; Wu, Q.; Wu, T. Mesoporous Cubic Nanocages Assembled by Coupled Monolayers with 100% Theoretical Capacity and Robust Cycling. ACS Cent. Sci. 2024, 10, 1283–1294. [Google Scholar] [CrossRef]
- Li, J.; Dong, Z.; Chen, R.; Wu, Q.; Zan, G. Advanced nickel-based composite materials for supercapacitor electrodes. Ionics 2024, 30, 1833–1855. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhitomirsky, I. Surface modification of MnO2 and carbon nanotubes using organic dyes for nanotechnology of electrochemical supercapacitors. J. Mater. Chem. A 2013, 1, 12519–12526. [Google Scholar] [CrossRef]
- Conway, B.; Pell, W. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. J. Power Sources 2002, 105, 169–181. [Google Scholar] [CrossRef]
- Conway, B.E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1–14. [Google Scholar] [CrossRef]
- Pell, W.; Conway, B.; Marincic, N. Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations. J. Electroanal. Chem. 2000, 491, 9–21. [Google Scholar] [CrossRef]
- Pell, W.G.; Conway, B.E. Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. J. Electroanal. Chem. 2001, 500, 121–133. [Google Scholar] [CrossRef]
- Wu, C.; Wang, J.; Bai, Y.; Li, X. Significant effect of cations on polypyrrole cycle stability. Solid State Ion. 2020, 346, 115216. [Google Scholar] [CrossRef]
- Aman, S.; Gouadria, S.; Ahmad, N.; Khan, S.A.; Manzoor, S.; Farid, H.M.T. The structural, dielectric and magnetic study of cobalt based spinel ferrites and polypyrrole composites. J. Mater. Sci. Mater. Electron. 2022, 33, 19534–19543. [Google Scholar] [CrossRef]
- Bartl, A.; Dunsch, L.; Schmeiβer, D.; Göpel, W.; Naarmann, H. Influence of oxygen on the paramagnetic properties of polypyrrole layers. Synth. Met. 1995, 69, 389–390. [Google Scholar] [CrossRef]
- Ghasemi, A.K.; Ghorbani, M.; Lashkenari, M.S.; Nasiri, N. Facile synthesize of PANI/GO/CuFe2O4 nanocomposite material with synergistic effect for superb performance supercapacitor. Electrochim. Acta 2023, 439, 141685. [Google Scholar] [CrossRef]
- Ishaq, S.; Moussa, M.; Kanwal, F.; Ayub, R.; Van, T.N.; Azhar, U.; Losic, D. One step strategy for reduced graphene oxide/cobalt-iron oxide/polypyrrole nanocomposite preparation for high performance supercapacitor electrodes. Electrochim. Acta 2022, 427, 140883. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Sankar, K.V.; Sanjeeviraja, C.; Selvan, R.K. Synthesis and physico-chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. J. Alloys Compd. 2013, 553, 350–357. [Google Scholar] [CrossRef]
Electrode | Capacitance from CV Data | Capacitance from GCD Data | ||||||
---|---|---|---|---|---|---|---|---|
1 mV s−1 | 100 mV s−1 | 3 mA cm−2 | 40 mA cm−2 | |||||
CS F cm−2 | Cm F g−1 | CS F cm−2 | Cm F g−1 | CS F cm−2 | Cm F g−1 | CS F cm−2 | Cm F g−1 | |
CFO 100 | 1.2 | 31 | 0.85 | 21.7 | 1.17 | 29.9 | 0.63 | 16.14 |
CFO 90 | 1.5 | 39.2 | 1.1 | 29.35 | 1.46 | 38.5 | 1.22 | 32 |
CFO 70 | 2.53 | 63.8 | 2.07 | 52.2 | 2.6 | 66.7 | 2.22 | 55.84 |
CFO 50 | 3.6 | 91.1 | 1.87 | 47.1 | 3.9 | 113 | 2.7 | 68 |
CFO 30 | 4.52 | 117.37 | 2.24 | 58.4 | 4.6 | 120.1 | 3.56 | 92.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, M.; Zhitomirsky, I. Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage. Materials 2024, 17, 5249. https://doi.org/10.3390/ma17215249
Awad M, Zhitomirsky I. Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage. Materials. 2024; 17(21):5249. https://doi.org/10.3390/ma17215249
Chicago/Turabian StyleAwad, Mahmoud, and Igor Zhitomirsky. 2024. "Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage" Materials 17, no. 21: 5249. https://doi.org/10.3390/ma17215249
APA StyleAwad, M., & Zhitomirsky, I. (2024). Magnetic CuFe2O4 Spinel–Polypyrrole Pseudocapacitive Composites for Energy Storage. Materials, 17(21), 5249. https://doi.org/10.3390/ma17215249