Severe Microbial Corrosion of L245 Transportation Pipeline Triggered by Wild Sulfate Reducing Bacteria in Shale Gas Produced Water
Abstract
:1. Introduction
2. Material and Methods/Experimental
2.1. Biological Incubation
2.2. Sample Preparation
2.3. Cell Counts and Corrosion Rate Measurement
2.4. Corrosion Morphology and Surface Composition
2.5. Electrochemical Testing
3. Results
3.1. Cell Identification and Culture Counting
3.2. Corrosion Rate Calculation
3.3. Incubation Surface and Cross-Section Observations
3.4. Pitting Observation and Measurement
3.5. Electrochemical Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, Q.; Liang, Y.T.; Xu, N.; Zhang, H.R.; Wang, J.A.; Zhou, X.Y. An MILP approach for detailed scheduling of multi-product pipeline in pressure control mode. Chem. Eng. Res. Des. 2018, 136, 620–637. [Google Scholar] [CrossRef]
- Nesic, S. Key issues related to modelling of internal corrosion of oil and gas pipelines–A review. Corros. Sci. 2007, 49, 4308–4338. [Google Scholar] [CrossRef]
- Xu, Z.X.; Zhang, F.; Zhang, T.S.; Wang, J.B.; Wang, J.Q.; He, R.Y.; Li, F.; Sun, W.; Liu, H.F. Unique corrosion reinforcement mechanism of pipeline oil sludge with sulfate-reducing bacteria on X60 steel and the targeted long-term inhibition of dazomet delivery. Corros. Sci. 2024, 228, 111792. [Google Scholar] [CrossRef]
- Xu, D.; Huang, W.; Ruschau, G.; Hornemann, J.; Wen, J.; Gu, T. Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subsequent exposure to pipeline fluids with and without SRB spiking. Eng. Fail. Anal. 2013, 28, 149–159. [Google Scholar] [CrossRef]
- Hinkson, D.; Wheeler, C.; Oney, C.; Keasler, V. MIC In a CO2 Gathering Line? A Field Case Study of Microbiologically Influenced Corrosion. In Corrosion/2013; Paper No C2013-2276; NACE International: Houston, TX, USA, 2013. [Google Scholar]
- Liu, L. Study on the Corrosion Behavior of Sulfate Reducing Bacteria in X52 Oil Pipeline. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2016. [Google Scholar]
- Farelas, F.; Galicia, M.; Brown, B.; Nesic, S.; Castaneda, H. Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS. Corros. Sci. 2010, 52, 509–517. [Google Scholar] [CrossRef]
- Ye, N.; Liao, K.X.; He, G.X.; Gan, Y.T.; Jiao, S.T.; Qin, M.; Zhao, S. Research on the corrosion causes analysis and protective measures of shale gas surface gathering pipelines. Nat. Gas. Ind. 2021, 54, 142–147. [Google Scholar]
- Wen, Z.; Yang, J.Y.; Wang, Y.R.; Kang, L.; Qing, S.Z. Analysis of failure reason of gas-gathering pipeline in Sichuan-Chongqing shale gas field. Chem. Eng. Oilgas 2021, 50, 109–113. [Google Scholar]
- Liu, H.M.; Wang, H. Analysis of Factors Influencing Microbiological Corrosion in Shale Gas Surface Gathering and Transportation System. Oil-Gas. Field Surf. Eng. 2020, 39, 83–87. [Google Scholar]
- Xie, M.; Tang, Y.F.; Song, B.; Zhao, W.W.; Wu, G.Y. Corrosion evaluation and control of a shale gas gathering and transportation system, A case study of the Changning-Weiyuan National Shale Gas Demonstration Area. Nat. Gas. Ind. 2020, 40, 127–134. [Google Scholar]
- Liu, H.W.; Meng, G.Z.; Li, W.H. Microbiologically Influenced Corrosion of Carbon Steel Beneath a Deposit in CO2-Saturated Formation Water Containing Desulfotomaculum nigrificans. Front. Microbiol. 2019, 10, 01298. [Google Scholar]
- Li, Q.S.; Wang, J.H.; Xing, X.T.; Hu, W.B. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions. Bioelectrochemistry 2018, 122, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, H.F.; Xu, L.M.; Zheng, J.S. A study on electrochemical inhomogeneity of the sulfate-reducing bacteria biofilm musing wire-beam electrode. Corros. Prot. 2001, 22, 325–327. [Google Scholar]
- Li, Y.C.; Feng, S.Q.; Liu, H.M. Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM. Corrosion Sci. 2020, 167, 108512. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, J.F.; Yao, F.; Wu, W.L.; Yang, S.Z.; Mbadinga, S.M.; Gu, J.D.; Mu, B.Z. Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs. Int. Biodeterior. Biodegrad. 2016, 114, 45–56. [Google Scholar] [CrossRef]
- Skovhus, T.; Eckert, R. Practical Aspects of MIC Detection; Monitoring and Management in the Oil and Gas Industry. In Corrosion/2014; Paper No C2014-3920; NACE International: Houston, TX, USA, 2014. [Google Scholar]
- Guan, J.; Xia, L.P.; Wang, L.Y.; Liu, J.F.; Gu, J.D.; Mua, B.Z. Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes. Int. Biodeterior. Biodegrad. 2013, 76, 58–66. [Google Scholar] [CrossRef]
- Galushko, A.; Kuever, J. Desulfovibrionaceae. In Bergey’s Manual of Systematics of Archaea and Bacteria; Whitman, W.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 107–133. [Google Scholar]
- Wang, W.; Wang, J.; Xu, H.B.; Li, X.B. Surface analysis methods used in microbially influenced corrosion study. J. Chin. Soc. Corros. Prot. 2007, 27, 60–64. [Google Scholar]
- Li, Y.; Xu, D.; Chen, C.; Li, X.; Jia, R.; Zhang, D.; Sand, W.; Wang, F.; Gu, T. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry, a review. J. Mater. Sci. Technol. 2018, 34, 1713–1718. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Q.; Senko, J.M.; Cheng, G.; Newby, B.Z.; Castaneda, H.; Ju, L.K. Long-term survival of Desulfovibrio vulgaris on carbon steel and associated pitting corrosion. Corros. Sci. 2015, 90, 89–100. [Google Scholar] [CrossRef]
- Jia, R.; Tan, J.L.; Jin, P.; Blackwood, D.J.; Xu, D.; Gu, T. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corros. Sci. 2018, 130, 1–11. [Google Scholar] [CrossRef]
- Gu, T.; Jia, R.; Unsal, T.; Xu, D. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. J. Mater. Sci. Technol. 2019, 35, 631–636. [Google Scholar] [CrossRef]
- Gu, T.; Zhao, K.; Nesic, S. A New Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction Theory. In Corrosion/2009; Paper No C2009-9390; NACE International: Houston, TX, USA, 2009. [Google Scholar]
- Eduok, U.; Ohaeri, E.; Szpunar, J. Accelerated corrosion of pipeline steel in the presence of Desulfovibrio desulfuricans biofilm due to carbon source deprivation in CO2 saturated medium. Mater. Sci. Eng. C 2019, 105, 110095. [Google Scholar] [CrossRef]
- Xu, D.; Gu, T. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int. Biodeterior. Biodegrad. 2014, 91, 74–81. [Google Scholar] [CrossRef]
- Sherar, B.W.A.; Power, I.M.; Keech, P.G. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corros. Sci. 2011, 53, 955–960. [Google Scholar] [CrossRef]
- Liu, H.W.; Gu, T.; Zhang, G.A.; Liu, H.F.; Cheng, Y.F. Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation. Corros. Sci. 2018, 136, 47–59. [Google Scholar]
- Xu, Z.X.; Zhang, T.S.; Wan, H.H.; He, Y.; Wang, J.Q.; He, R.Y.; Liu, H.F. Electrochemical investigation of the “double-edged” effect of low-dose biocide and exogenous electron shuttle on microbial corrosion behavior of carbon steel and copper in enriched seawater. Electrochimica Acta 2024, 476, 143687. [Google Scholar] [CrossRef]
- Dou, W.; Jia, R.; Jin, P.; Liu, J.; Chen, S.; Gu, T. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria. Corros. Sci. 2018, 144, 237. [Google Scholar] [CrossRef]
- Li, Y.; Jia, R.; Al-Mahamedh, H.H.; Xu, D.; Gu, T. Enhanced biocide mitigation of field biofilm consortia by a mixture of D-amino acids. Front. Microbiol. 2016, 7, 896. [Google Scholar] [CrossRef] [PubMed]
- Magot, M.; Ravot, G.; Campaignolle, X.; Ollivier, B.; Patel, B.K.C.; Fardeau, M.L.; Thomas, P.; Crolet, J.L.; Garcia, J.L. Dethiosulfovibrio peptidovorans gen. nov.; sp. nov.; a new anaerobic; slightly halophilic; thiosulfate-reducing bacterium from corroding offshore oil wells. Int. J. Syst. Evol. Microbiol. 1997, 47, 818–824. [Google Scholar] [CrossRef]
- Surkov, A.V.; Dubinina, G.A.; Lysenko, A.M.; Glockner, F.O.; Kuever, J. Dethiosulfovibrio russensis sp. nov.; Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov.; novel anaerobic; thiosulfate- and sulfur-reducing bacteria isolated from ‘Thiodendron’ sulfur mats in different saline environments. Int. J. Syst. Evol. Microbiol. 2001, 51, 327–337. [Google Scholar] [CrossRef]
- Wan, H.H.; Zhang, T.S.; Wang, J.L.; Rao, Z.; Zhang, Y.Z.; Li, G.F.; Gu, T.; Liu, H.F. Effect of alloying element content on anaerobic microbiologically influenced corrosion sensitivity of stainless steels in enriched artificial seawater. Bioelectrochemistry 2023, 150, 108367. [Google Scholar] [CrossRef]
- Xu, Z.X.; Zhang, T.S.; Wan, H.H.; Liu, H.W.; Gu, T.; Liu, H.F. Accelerated development of Ti-6Al-4V microbial corrosion triggered by electroactive sulfate-reducing Desulfovibrio ferrophilus biofilm in enriched artificial seawater containing soluble electron shuttle. Corros. Sci. 2023, 220, 111306. [Google Scholar] [CrossRef]
- Frankel, G.S. Pitting corrosion of metals a review of the critical factors. J. Electrochem. Soc. 1998, 145, 2186–2198. [Google Scholar] [CrossRef]
- Soltis, J. Passivity breakdown; pit initiation and propagation of pits in metallic materials-review. Corros. Sci. 2015, 90, 5–22. [Google Scholar] [CrossRef]
- King, R.A.; Miller, J.D.A. Corrosion by the sulphate-reducing bacteria. Nature 1971, 233, 491–492. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhou, E.; Zhao, Y.; Li, H.; Liu, Z.; Zhang, D.; Yang, C.; Lin, H.; Li, X.; Yang, K. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms. J. Mater. Sci. Technol. 2017, 34, 1325–1336. [Google Scholar] [CrossRef]
Rs (Ω·cm2) | Qbc (Ω−1·cm−2·sn) | Rbc (Ω·cm2) | Qdl (Ω−1·cm−2·sn) | Rct (Ω·cm2) | Rbc + Rct (Ω·cm2) | |
---|---|---|---|---|---|---|
0 | 25.97 | 9.28 × 10−3 | 24.09 | 1.88 × 10−2 | 1372 | 1396.09 |
1 | 18.14 | 4.86 × 10−3 | 99.11 | 9.89 × 10−3 | 1331 | 1430.11 |
3 | 9.553 | 6.59 × 10−3 | 34.18 | 5.95 × 10−3 | 1432 | 1466.18 |
7 | 17.68 | 4.55 × 10−4 | 286 | 8.41 × 10−4 | 2612 | 2898 |
10 | 19.06 | 1.89 × 10−3 | 340.3 | 1.74 × 10−3 | 5427 | 5767.3 |
15 | 21.01 | 2.27 × 10−3 | 132.4 | 2.48 × 10−3 | 7255 | 7387.4 |
21 | 18.14 | 1.48 × 10−3 | 116.6 | 1.63 × 10−3 | 7772 | 7888.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Wang, X.; Cui, W.; Liu, H. Severe Microbial Corrosion of L245 Transportation Pipeline Triggered by Wild Sulfate Reducing Bacteria in Shale Gas Produced Water. Materials 2024, 17, 4377. https://doi.org/10.3390/ma17174377
Sun M, Wang X, Cui W, Liu H. Severe Microbial Corrosion of L245 Transportation Pipeline Triggered by Wild Sulfate Reducing Bacteria in Shale Gas Produced Water. Materials. 2024; 17(17):4377. https://doi.org/10.3390/ma17174377
Chicago/Turabian StyleSun, Ming, Xinhua Wang, Wei Cui, and Hongfang Liu. 2024. "Severe Microbial Corrosion of L245 Transportation Pipeline Triggered by Wild Sulfate Reducing Bacteria in Shale Gas Produced Water" Materials 17, no. 17: 4377. https://doi.org/10.3390/ma17174377
APA StyleSun, M., Wang, X., Cui, W., & Liu, H. (2024). Severe Microbial Corrosion of L245 Transportation Pipeline Triggered by Wild Sulfate Reducing Bacteria in Shale Gas Produced Water. Materials, 17(17), 4377. https://doi.org/10.3390/ma17174377