Multi-Objective Optimization and Mechanical Properties Analysis of Steel–PVA Hybrid Fiber-Reinforced Cementitious Composites
Abstract
1. Introduction
2. Experiment
2.1. Raw Material
2.2. Performance Measurement
2.2.1. Dumbbell Axial Tensile Test Method
2.2.2. Cube Compression Test Method
2.2.3. Four-Point Bending Test Method for Sheet Metal
3. Results and Discussion
3.1. Single Factor Optimization Method PVA Fiber Volume Content Test Design and Strength Analysis
3.1.1. Effect of PVA Fiber Volume Content on Tensile Strength of HFRCC
3.1.2. Effect of PVA Fiber Volume Content on Compressive Strength of HFRCC
3.1.3. Effect of PVA Fiber Volume Content on HFRCC Flexural Strength
3.2. Multi-Factor Optimization Method Steel /PVA Fiber Volume Content Test Design and Strength Analysis
3.2.1. Effect of the Replacement Rate of PVA Fibers Produced in China on the Tensile Strength of HFRCC
3.2.2. Effect of the Replacement Rate of PVA Fibers Produced in China on the Compressive Strength of HFRCC
3.2.3. Effect of the Replacement Rate of PVA Fiber Produced in China at Different Volume Contents on the Bending Strength of HFRCC
4. Multi-Objective Optimization of Principal Component Analysis
4.1. Principle of Principal Component Analysis
4.2. HFRCC Multi-Objective Principal Component and Index Analysis Calculation
4.2.1. Correlation Analysis of HFRCC Influencing Factors
4.2.2. HFRCC Performance Model Variable Commonality
4.2.3. Analysis of Principal Component Eigenvalue and Variance Contribution Rate of HFRCC Performance Model
4.3. Calculation and Analysis of Comprehensive Performance Index of HFRCC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nilimaa, J. Smart materials and technologies for sustainable concrete construction. Dev. Built Environ. 2023, 15, 100177. [Google Scholar] [CrossRef]
- Bulinska, S.; Sujak, A.; Pyzalski, M. From Waste to Renewables: Challenges and Opportunities in Recycling Glass Fibre Composite Products from Wind Turbine Blades for Sustainable Cement Production. Sustainability 2024, 16, 5150. [Google Scholar] [CrossRef]
- Durczak, K.; Pyzalski, M.; Brylewski, T.; Sujak, A. Effect of Variable Synthesis Conditions on the Formation of Ye’elimite-Aluminate-Calcium (YAC) Cement and Its Hydration in the Presence of Portland Cement (OPC) and Several Accessory Additives. Materials 2023, 16, 6052. [Google Scholar] [CrossRef] [PubMed]
- Son, M.; Kim, G.; Kim, H.; Lee, S.; Lee, Y.; Nam, J.; Kobayashi, K. Effect of Fiber Blending Ratio on the Tensile Properties of Steel Fiber Hybrid Reinforced Cementitious Composites under Different Strain Rates. Materials 2021, 14, 4504. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liang, X.; Zhai, T.; Wang, Y.; Wu, K. Calculation Method for Short-term Stiffness of RC One-way Slabs with HFRCC Permanent Formwork. Mater. Rev. 2024, 38, 22060083-9. [Google Scholar]
- Wang, Z.Y.; Liang, X.W.; Wang, Y.; Zhai, T.W. Experimental and theoretical investigations on the flexural behavior of RC slabs with steel-PVA hybrid fiber reinforced cementitious composite (HFRCC) permanent formwork. Case Stud. Constr. Mater. 2022, 17, e01432. [Google Scholar] [CrossRef]
- Xie, Q.; Chai, X.W.; Yu, X.W.; Yang, T.C.; Lin, M.Q. Compressive behavior of steel-polyethylene hybrid fiber reinforced cementitious composite. Case Stud. Constr. Mater. 2023, 19, e02369. [Google Scholar] [CrossRef]
- Yao, Y.M.; Yang, K.M.; Wu, H.Y.; Cheng, Z.; Liu, J.Z.; Wang, J.Q.; Zhong, R. Distributions of coarse aggregate and steel fiber in ultra-high performance concrete: Migration behavior and correlation with compressive strength. J. Build. Eng. 2024, 95, 110128. [Google Scholar] [CrossRef]
- Chen, G.; Zhuo, K.X.; Luo, R.H.; Lai, H.M.; Cai, Y.J.; Xie, B.X.; Lin, J.X. Fracture behavior of environmentally friendly high-strength concrete using recycled rubber powder and steel fibers: Experiment and modeling. Case Stud. Constr. Mater. 2024, 21, e03501. [Google Scholar] [CrossRef]
- Fayed, S.; Madenci, E.; Özkiliç, Y.O.; Basha, A. The flexural behaviour of multi-layered steel fiber reinforced or ultra-high performance-normal concrete composite ground slabs. J. Build. Eng. 2024, 95, 109901. [Google Scholar] [CrossRef]
- Qiao, X.T.; Wang, P.; Yan, C.F.; Li, F.; Wu, L. Effect of Modified Deformed Steel Fiber on Mechanical Properties of Artificial Granite. Adv. Civ. Eng. 2021, 2021, 8864753. [Google Scholar] [CrossRef]
- Fayzulla, B.J.; Eroglu, M.; Erklig, A. Investigation of the effect of steel fiber (200 mesh size) hybridization on properties of steel/glass fiber and steel/basalt fiber reinforced epoxy composite laminates. Polym. Compos. 2022, 43, 6647–6659. [Google Scholar] [CrossRef]
- Yang, Q.G.; Ru, N.; He, X.F.; Peng, Y. Mechanical Behavior of Refined SCC with High Admixture of Hybrid Micro- and Ordinary Steel Fibers. Sustainability 2022, 14, 5637. [Google Scholar] [CrossRef]
- Kuranli, Ö.; Uysal, M.; Abbas, M.T.; Çosgun, T.; Nis, A.; Aygörmez, Y.; Canpolat, O.; Al-mashhadani, M.M. Mechanical and durability properties of steel, polypropylene and polyamide fiber reinforced slag-based alkali-activated concrete. Eur. J. Environ. Civ. Eng. 2023, 27, 114–139. [Google Scholar] [CrossRef]
- Tafsirojjaman, T.; Dogar, A.U.R.; Liu, Y.; Manalo, A.; Thambiratnam, D.P. Performance and design of steel structures reinforced with FRP composites: A state-of-the-art review. Eng. Fail. Anal. 2022, 138, 106371. [Google Scholar] [CrossRef]
- Sun, L.M.; Liu, S.G.; Zhao, H.B.; Muhammad, U.; Chen, D.; Li, W.G. Dynamic performance of fiber-reinforced ultra-high toughness cementitious composites: A comprehensive review from materials to structural applications. Eng. Struct. 2024, 317, 118647. [Google Scholar] [CrossRef]
- Min, W.L.; Jin, W.L.; He, X.Y.; Wu, R.J.; Chen, K.Y.; Chen, J.J.; Xia, J. Experimental study on the flexural fatigue performance of slag/fly ash geopolymer concrete reinforced with modified basalt and PVA hybrid fibers. J. Build. Eng. 2024, 94, 109917. [Google Scholar] [CrossRef]
- Lin, C.L.; Huang, D.M.; Liu, Z.Z.; Lu, Y.Y. Mechanical properties, micro-mechanisms, and constitutive models of seawater sea-sand engineered cementitious composites. J. Build. Eng. 2024, 94, 109987. [Google Scholar] [CrossRef]
- Gao, Q.F.; Jiang, H.N.; Yang, Q.L.; Xu, H.; Wang, Y. Investigation of the Multiparameter Mix Proportion Design and Mechanical Properties of Polyvinyl Alcohol-Engineered Cementitious Composites. J. Mater. Civ. Eng. 2024, 36, 04024250. [Google Scholar] [CrossRef]
- Zhang, S.L.; Liu, J.S.; Duan, S.X.; Du, L.W.; Zhang, Z.Y.; Zhang, M.; Jiang, D.C.; Wu, X.Y. Investigation into the strength and toughness of polyvinyl alcohol fiber-reinforced fly ash-based geopolymer composites. J. Build. Eng. 2024, 90, 109371. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Zheng, Y.X.; Wan, J.Y.; Hui, D. Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete. Rev. Adv. Mater. Sci. 2021, 60, 418–437. [Google Scholar] [CrossRef]
- Yu, F.; Wang, H.; Song, J.; Fang, Y.; Xu, B.; Wang, J.F.; Shen, W.Y. Deformation analysis of flexural PVA fiber-reinforced RAC slabs. Structures 2022, 37, 661–670. [Google Scholar] [CrossRef]
- Yu, F.; Li, X.; Song, J.; Fang, Y.; Qin, Y.; Bu, S.S. Experimental study on flexural capacity of PVA fiber-reinforced recycled concrete slabs. Arch. Civ. Mech. Eng. 2021, 21, 1–23. [Google Scholar] [CrossRef]
- Zhuang, J.P.; Shen, S.Z.; Yang, Y.; Xu, K.; Ni, P.J. Mechanical performance of basalt and PVA fiber reinforced hybrid-fiber engineered cementitious composite with superimposed basalt fiber content. Constr. Build. Mater. 2022, 353, 129183. [Google Scholar] [CrossRef]
- Pan, Z.F.; Wu, C.; Liu, J.Z.; Wang, W.; Liu, J.W. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Constr. Build. Mater. 2015, 78, 397–404. [Google Scholar] [CrossRef]
- Arce, G.A.; Noorvand, H.; Hassan, M.M.; Rupnow, T.; Dhakal, N. Feasibility of low fiber content PVA-ECC for jointless pavement application. Constr. Build. Mater. 2021, 268, 121131. [Google Scholar] [CrossRef]
- Chu, H. Research on ECC Optimization Design Based on Domestic PVA-PET Fiber System. Master’s Thesis, Southeast University, Nanjing, China, 2021. [Google Scholar]
- Fahad, A.M.; Wang, M.X.; Chen, J.Y.; Zhang, H.P. Experimental and numerical study on tensile behavior of surface modified PVA fiber reinforced strain-hardening cementitious composites (PVA-SHCC). Constr. Build. Mater. 2019, 217, 403–415. [Google Scholar] [CrossRef]
- Rambo, D.A.S.; Silva, F.D.; Toledo, R.D. Effect of steel fiber hybridization on the fracture behavior of self-consolidating concretes. Cem. Concr. Compos. 2014, 54, 100–109. [Google Scholar] [CrossRef]
- Qian, C.X.; Stroeven, P. Development of hybrid polypropylene-steel fibre-reinforced concrete. Cem. Concr. Res. 2000, 30, 63–69. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Q.H.; Xu, S.L. Contribution of steel fiber on the dynamic tensile properties of hybrid fiber ultra high toughness cementitious composites using Brazilian test. Constr. Build. Mater. 2020, 246, 118416. [Google Scholar] [CrossRef]
- Dehghani, A.; Aslani, F. The synergistic effects of shape memory alloy, steel, and carbon fibres with polyvinyl alcohol fibres in hybrid strain-hardening cementitious composites. Constr. Build. Mater. 2020, 252, 119061. [Google Scholar] [CrossRef]
- Zukowski, B.; Mendonça, Y.G.D.; Tavares, I.J.K.; Toledo, R.D. Mechanical Properties of Hybrid PVA-Natural Curaua Fiber Composites. Materials 2022, 15, 2808. [Google Scholar] [CrossRef]
- Liu, X.Z.; Xiang, K.; Guo, Y.C.; Ye, Q.; Zhang, J.T.; Pei, X.K.; Wang, X. Experimental study on impact toughness of multi-combination hybrid fiber-reinforced magnesium phosphate cement-based materials. J. Build. Eng. 2023, 78, 107564. [Google Scholar] [CrossRef]
- Lawler, J.S.; Zampini, D.; Shah, S.P. Microfiber and macrofiber hybrid fiber-reinforced concrete. J. Mater. Civ. Eng. 2005, 17, 595–604. [Google Scholar] [CrossRef]
- Wang, Z. Study on Mechanical Properties of Polyvinyl Alcohol-Steel Fiber Hybrid Reinforced Cement-Based Composite. Ph.D. Thesis, Tsinghua University, Beijing, China, 2016. [Google Scholar]
- Yao, Y.; Wang, B.Q.; Zhuge, Y.; Huang, Z.H. Properties of hybrid basalt-polypropylene fiber reinforced mortar at different temperatures. Constr. Build. Mater. 2022, 346, 128433. [Google Scholar] [CrossRef]
- Feng, H.; Shao, Q.; Yao, X.P.; Li, L.L.; Yuan, C.F. Investigating the Hybrid Effect of Micro-steel Fibres and Polypropylene Fibre-Reinforced Magnesium Phosphate Cement Mortar. Int. J. Concr. Struct. Mater. 2022, 16, 35. [Google Scholar] [CrossRef]
- Feng, H.; Li, L.L.; Wang, W.Q.; Cheng, Z.Q.; Gao, D.Y. Mechanical properties of high ductility hybrid fibres reinforced magnesium phosphate cement-based composites. Compos. Struct. 2022, 284, 115219. [Google Scholar] [CrossRef]
- Lu, C.; She, P.Y.; Chu, H.; Yao, Y.M.; Leung, C.K.Y. An investigation on the performance enhancement and cost reduction of engineered cementitious composites developed with local PVA and PET fibers. J. Sustain. Cem. Based Mater. 2023, 12, 1020–1032. [Google Scholar] [CrossRef]
- Souza, A.S.; Bezerra, M.A.; Cerqueira, U.; Rodrigues, C.J.O.; Santos, B.C.; Novaes, C.G.; Almeida, E.R.V. An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples. Food Sci. Biotechnol. 2024, 33, 1323–1336. [Google Scholar] [CrossRef]
- Zheng, J.H.; Yang, Z.Y.; Ge, Z.Q. Deep Residual Principal Component Analysis as Feature Engineering for Industrial Data Analytics. IEEE Trans. Instrum. Meas. 2024, 73, 3420267. [Google Scholar] [CrossRef]
- Liu, R.X.; Kuang, J.; Gong, Q.; Hou, X.L. Principal component regression analysis with SPSS. Comput. Methods Programs Biomed. 2003, 71, 141–147. [Google Scholar] [CrossRef]
- Dorabiala, O.; Aravkin, A.Y.; Kutz, J.N. Ensemble Principal Component Analysis. IEEE Access 2024, 12, 6663–6671. [Google Scholar] [CrossRef]
- Bi, J.; Zhao, Y.; Bao, C.; Huo, L.; Wang, Z.; Qiao, H. Research on Distribution of Steel Fiber with Different Volume Content in Concrete. J. Hunan Univ. Nat. Sci. 2021, 48, 99–108. [Google Scholar]
- Hu, S.; Cai, H.; Hong, R.; Li, M.; Yao, F. Performance Test and Microstructure of Modified PVC Aggregate-Hybrid Fiber Reinforced Engineering Cementitious Composite (ECC). Materials 2021, 14, 1856. [Google Scholar] [CrossRef]
- Luo, Z.; Yang, X.; Ji, H.; Zhang, C. Carbonation Model and Prediction of Polyvinyl Alcohol Fiber Concrete with Fiber Length and Content Effects. Int. J. Concr. Struct. Mater. 2022, 16, 9. [Google Scholar] [CrossRef]
- Mensah, C.; Min, B.; Wang, Z.; Bonsu, A.O. Investigating the effect of steel fiber content on bond behavior between externally bonded CFRP-to-concrete joints. Structures 2022, 36, 565–579. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Akeed, M.H.; Qaidi, S.; Abu Bakar, B.H. Ultra-high-performance concrete: Impacts of steel fibre shape and content on flowability, compressive strength and modulus of rupture. Case Stud. Constr. Mater. 2022, 17, e01615. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, D.; Gao, H.; Guo, Z.; Qian, Y. Research on Fracture Properties of Ultra-High Strength Concrete with Polyformaldehyde Fibers. Ind. Constr. 2022, 52, 179–185. [Google Scholar]
- Xiao, S.-H.; Liao, S.-J.; Zhong, G.-Q.; Guo, Y.-C.; Lin, J.-X.; Xie, Z.-H.; Song, Y. Dynamic properties of PVA short fiber reinforced low-calcium fly ash—Slag geopolymer under an SHPB impact load. J. Build. Eng. 2021, 44, 103220. [Google Scholar] [CrossRef]
- Yang, G.; Bi, J.; Dong, Z.; Li, Y.; Liu, Y. Experimental Study on Dynamic Tensile Properties of Macro-Polypropylene Fiber Reinforced Cementitious Composites. Int. J. Concr. Struct. Mater. 2022, 16, 66. [Google Scholar] [CrossRef]
- Wang, S.Y.; Du, H.X.; Lv, J.J.; Guo, J.; Yue, G.Y.; Ma, J. Test research on mechanical properties of engineered cementitious composites. In Proceedings of the 6th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE), Chongqing, China, 20–22 November 2020. [Google Scholar]
- JG/T2461-2018; Test Method for Mechanical Properties of High Ductility Fiber-Reinforced Cement-Based Composites. China Building Industry Press: Beijing, China, 2018.
- Ahmad, J.; González-Lezcano, R.A.; Majdi, A.; Ben Kahla, N.; Deifalla, A.F.; El-Shorbagy, M.A. Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis. Materials 2022, 15, 5111. [Google Scholar] [CrossRef]
- Ahmed, S.F.U.; Maalej, M. Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites. Constr. Build. Mater. 2009, 23, 96–106. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, P.Z. Crack Growth Resistance of Hybrid Fiber-Reinforced Cement Matrix Composites. J. Aerosp. Eng. 2011, 24, 154–161. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, S.C.; Chen, F.; Wang, C.H.; Chen, Q. Research Progress and Performance Evaluation of Polyvinyl Alcohol Fiber Engineered Cementitious Composites. Sustainability 2023, 15, 10991. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zhang, S.S.; Ye, P.H.; Liang, X. Mechanical properties and damage constitutive of recycled aggregate concrete with polyvinyl alcohol fiber under compression and shear. Case Stud. Constr. Mater. 2022, 17, e01466. [Google Scholar] [CrossRef]
- Bai, Z.; Li, M.; Li, F.; Du, Q. Study on particle cluster dynamics behavior in settling and the influence by fiber barrier. Front. Mater. 2022, 9, 1081613. [Google Scholar] [CrossRef]
- He, J.; Shi, J.; Zhang, Y.; Bi, Y.; Fan, L. Effect of Fractal-Based Fiber Clustering on Tensile Properties of BFRP. Adv. Civ. Eng. 2021, 2021, 3382200. [Google Scholar] [CrossRef]
- Huang, B.; Sun, L.; Wang, L.; Li, T. Effect of fiber waviness and cluster on effective elastic properties of fiber-reinforced composites. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE2015), Houston, TX, USA, 13–19 November 2016. [Google Scholar]
- Kataoka, Y.; Taya, M. Analysis of mechanical behavior of a short fiber composite using micromechanics based model—(Effects of fiber clustering on composite stiffness and crack initiation). JSME Int. J. Ser. A-Solid Mech. Mater. Eng. 2000, 43, 46–52. [Google Scholar] [CrossRef]
- Wang, H.; Lei, Y.-P.; Wang, J.-S.; Qin, Q.-H.; Xiao, Y. Theoretical and computational modeling of clustering effect on effective thermal conductivity of cement composites filled with natural hemp fibers. J. Compos. Mater. 2016, 50, 1509–1521. [Google Scholar] [CrossRef]
- Aksak, B.; Murphy, M.P.; Sitti, M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir 2007, 23, 3322–3332. [Google Scholar] [CrossRef]
- Geim, A.K.; Dubonos, S.V.; Grigorieva, I.V.; Novoselov, K.S.; Zhukov, A.A.; Shapoval, S.Y. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2, 461–463. [Google Scholar] [CrossRef]
- Spolenak, R.; Gorb, S.; Arzt, E. Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 2005, 1, 5–13. [Google Scholar] [CrossRef]
- Akatsu, T.; Tanabe, Y.; Yasuda, E. Crack-bridging processes and fracture resistance of a discontinuous fiber-reinforced brittle matrix composite. J. Mater. Res. 1999, 14, 1316–1324. [Google Scholar] [CrossRef]
- Ding, C.; Guo, L.; Ren, J.; Wang, Y.; Li, X.; Gao, Y.; Liu, W.; Li, R. A Modified Fiber Bridging Model for High Ductility Cementitious Composites Based on Debonding-Slipping Rupture Analysis. Adv. Mater. Sci. Eng. 2022, 2022, 1461318. [Google Scholar] [CrossRef]
- Feih, S.; Wei, J.; Kingshott, P.; Sorensen, B.F. The influence of fibre sizing on the strength and fracture toughness of glass fibre composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 245–255. [Google Scholar] [CrossRef]
- Khan, R. Fiber bridging in composite laminates: A literature review. Compos. Struct. 2019, 229, 111418. [Google Scholar] [CrossRef]
- Kim, G.W.; Choi, H.J.; Piao, R.Z.; Oh, T.; Koh, K.; Lim, K.; Yoo, D.Y. Influence of hybrid reinforcement effects of fiber types on the mechanical properties of ultra-high-performance concrete. Constr. Build. Mater. 2024, 426, 135995. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, P.; Zhu, F.; Han, S. Study on the fiber distribution and mechanical properties of hybrid fiber ECC. J. Huazhong Univ. Sci. Technology. Nat. Sci. 2023, 51, 84–89. [Google Scholar]
- Gong, C.J.; Kang, L.; Zhou, W.H.; Liu, L.H.; Lei, M.F. Tensile Performance Test Research of Hybrid Steel Fiber-Reinforced Self-Compacting Concrete. Materials 2023, 16, 1114. [Google Scholar] [CrossRef]
- Luo, X.Z.; Zhang, S.M.; Li, A.D.; Zhang, D. Fiber content optimization of UHPC and R-UHPC oriented to tensile behavior and cost reduction. Constr. Build. Mater. 2023, 395, 132314. [Google Scholar] [CrossRef]
- Liu, P.; Yu, X.; Tao, W.; Guo, Y. Modelling of bridging toughening in fiber-reinforced composites. J. Zhejiang Univ. Eng. Sci. 2006, 40, 903–909. [Google Scholar]
- Sun, Y.J.; Singh, R.N. Determination of fiber bridging stress profile by debond length measurement. Acta Mater. 2000, 48, 3607–3619. [Google Scholar] [CrossRef]
- Lee, B.Y.; Lee, Y.; Kim, J.K.; Kim, Y.Y. Micromechanics-Based Fiber-Bridging Analysis of Strain-Hardening Cementitious Composite Accounting for Fiber Distribution. Cmes-Comput. Model. Eng. Sci. 2010, 61, 111–132. [Google Scholar]
- Lei, Z.; Quan, W.; Wei, Q. Micromechanics of fiber-crack interaction studied by micro-Raman spectroscopy: Bridging fiber. Opt. Lasers Eng. 2013, 51, 358–363. [Google Scholar] [CrossRef]
- Fraino, P.E. Using principal component analysis to explore multi-variable relationships. Nat. Rev. Earth Environ. 2023, 4, 294. [Google Scholar] [CrossRef]
- Kim, W.; Son, K.; Choi, W. DoA Estimation Using Wireless Distributed PCA. J. Korean Inst. Commun. Inf. Sci. 2022, 47, 836–844. [Google Scholar] [CrossRef]
- Chowdhury, A.; Bose, A.; Zhou, S.; Woodruff, D.P.; Drineas, P. A Fast, Provably Accurate Approximation Algorithm for Sparse Principal Component Analysis Reveals Human Genetic Variation Across the World. In Research in Computational Molecular Biology: The Annual International Conference, Proceedings of the RECOMB, Cambridge, MA, USA, 14–18 May 2005; Springer International Publishing: Cham, Switzerland, 2022; Volume 13278, pp. 86–106. [Google Scholar] [CrossRef]
Initial Setting Time/min | Final Setting Time/min | Stability | Compressive Strength/MPa | Flexural Strength/MPa | ||
---|---|---|---|---|---|---|
3d | 28d | 3d | 28d | |||
135 | 168 | Up to standard | 22.7 | 46.7 | 4.8 | 8.4 |
Ingredient | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | R2O | SO3 | Firing Vector |
---|---|---|---|---|---|---|---|---|
Content /% | 14.52 | 1.66 | 0.15 | 0.17 | 31.94 | 0.22 | 45.38 | 0.25 |
Fineness (45 μm Square Hole Sieve Residue)/% | Water Requirement Ratio/% | Water Content/% | Alkali Content/% | Activity Index/% |
---|---|---|---|---|
8.5 | 94 | 0.5 | 1.3 | 76 |
Ingredient | SiO2 | Al2O3 | Fe2O3 | SO3 | Firing Vector |
---|---|---|---|---|---|
Content/% | 75 | 1.1 | 3.8 |
Fiber Type | Length/mm | Tensile Strength/MPa | Dry Fracture Elongation/% | Density/(g/cm3) | Young’s Modulus/GPa | |
---|---|---|---|---|---|---|
Steel fiber | 13 | 200 | 2850 | 3.20 | 7.80 | 210 |
Japan PVA fiber | 12 | 39 | 1620 | 7 | 1.30 | 42.80 |
China PVA fiber | 12 | 15.09 | 1830 | 6.90 | 1.29 | 40 |
Test Number | Fiber Volume Content % | Experimental Result/MPa | |||
---|---|---|---|---|---|
China PVA Fiber | Japan PVA Fiber | Tensile Strength | Compressive Strength | Bending Strength | |
C0 | 0 | 0 | 1.43 | 30.28 | 2.11 |
C0.4J0 | 0.4 | 0 | 2.62 | 29.14 | 3.43 |
C0.8J0 | 0.8 | 0 | 2.28 | 26.86 | 3.59 |
C1.2J0 | 1.2 | 0 | 2.30 | 30.69 | 4.71 |
C1.6J0 | 1.6 | 0 | 3.08 | 32.04 | 4.12 |
C2.0J0 | 2.0 | 0 | 3.68 | 34.39 | 4.35 |
C2.2J0 | 2.2 | 0 | 3.31 | 28.21 | 4.38 |
C0J0.4 | 0 | 0.4 | 2.89 | 29.00 | 2.02 |
C0J0.8 | 0 | 0.8 | 2.16 | 26.10 | 3.01 |
C0J1.2 | 0 | 1.2 | 2.38 | 30.52 | 4.38 |
C0J1.6 | 0 | 1.6 | 3.31 | 31.23 | 5.13 |
C0J2.0 | 0 | 2.0 | 4.23 | 34.09 | 5.23 |
C0J2.2 | 0 | 2.2 | 3.74 | 29.94 | 4.65 |
Test Number | Fiber Volume Content % | Experimental Result/MPa | ||||
---|---|---|---|---|---|---|
Steel Fiber | China PVA Fiber | Japan PVA Fiber | Tensile Strength | Compressive Strength | Bending Strength | |
C0 | 0 | 0 | 0 | 1.43 | 30.28 | 2.11 |
S0.2C0J2 | 0.2 | 0 | 2.0 | 3.61 | 33.77 | 9.21 |
S0.2C0.5J1.5 | 0.2 | 0.5 | 1.5 | 3.37 | 26.79 | 6.39 |
S0.2C1.0J1.0 | 0.2 | 1.0 | 1.0 | 3.37 | 30.53 | 5.66 |
S0.2C1.5J0.5 | 0.2 | 1.5 | 0.5 | 3.50 | 33.54 | 5.26 |
S0.2C2.0J0 | 0.2 | 2.0 | 0 | 3.21 | 44.07 | 5.28 |
S0.4C0J2 | 0.4 | 0 | 2.0 | 3.66 | 42.98 | 9.83 |
S0.4C0.5J1.5 | 0.4 | 0.5 | 1.5 | 2.57 | 26.92 | 4.66 |
S0.4C1J1 | 0.4 | 1.0 | 1.0 | 3.36 | 36.36 | 5.83 |
S0.4C1.5J0.5 | 0.4 | 1.5 | 0.5 | 2.48 | 43.48 | 6.21 |
S0.4C2.0J0 | 0.4 | 2.0 | 0 | 3.46 | 43.24 | 6.57 |
Test Number | Fiber Volume Content % | Experimental Result/MPa | ||||
---|---|---|---|---|---|---|
Steel Fiber | China PVA Fiber | Japan PVA Fiber | Tensile Strength | Compressive Strength | Bending Strength | |
X1 | X2 | X3 | X4 | X5 | X6 | |
S0.2C0J2 | 0.2 | 0 | 2.0 | 3.61 | 33.77 | 9.21 |
S0.2C0.5J1.5 | 0.2 | 0.5 | 1.5 | 3.37 | 26.79 | 6.39 |
S0.2C1.0J1.0 | 0.2 | 1.0 | 1.0 | 3.37 | 30.53 | 5.66 |
S0.2C1.5J0.5 | 0.2 | 1.5 | 0.5 | 3.50 | 33.54 | 5.26 |
S0.2C2.0J0 | 0.2 | 2.0 | 0 | 3.21 | 44.07 | 5.28 |
S0.4C0J2 | 0.4 | 0 | 2.0 | 3.66 | 42.98 | 9.83 |
S0.4C0.5J1.5 | 0.4 | 0.5 | 1.5 | 2.57 | 26.92 | 4.66 |
S0.4C1J1 | 0.4 | 1.0 | 1.0 | 3.36 | 36.36 | 5.83 |
S0.4C1.5J0.5 | 0.4 | 1.5 | 0.5 | 2.48 | 43.48 | 6.21 |
S0.4C2.0J0 | 0.4 | 2.0 | 0 | 3.46 | 43.24 | 6.57 |
Project | ||||||
---|---|---|---|---|---|---|
Start | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Extraction commonality | 0.888 | 0.994 | 0.994 | 0.868 | 0.948 | 0.956 |
Principal Component | Initial Eigenvalue | Extract the Sum of Loads Squared | ||||
---|---|---|---|---|---|---|
Total | Variance Contribution Rate/% | Cumulative Variance Contribution Rate/% | Total | Variance Contribution Rate/% | Cumulative Variance Contribution rate/% | |
F1 | 2.777 | 46.277 | 46.277 | 2.777 | 46.277 | 46.277 |
F2 | 1.536 | 25.605 | 71.882 | 1.536 | 25.605 | 71.882 |
F3 | 1.333 | 22.223 | 94.105 | 1.333 | 22.223 | 94.105 |
F4 | 0.313 | 5.222 | 99.327 | |||
F5 | 0.040 | 0.673 | 100.000 | |||
F6 | 2.220 × 10−16 | 3.701 × 10−15 | 100.000 |
Project | Principal Component | ||
---|---|---|---|
F1 (46.277%) | F2 (25.605%) | F3 (22.223%) | |
Steel fiber volume ratio (volume fraction) | −0.159 | 0.468 | −0.802 |
China PVA fiber volume ratio (volume fraction) | −0.956 | 0.096 | 0.265 |
Japan PVA fiber volume ratio (volume fraction) | 0.956 | −0.096 | −0.265 |
Tensile strength | 0.472 | 0.320 | 0.737 |
Compressive strength | −0.417 | 0.879 | 0.048 |
Bending strength | 0.726 | 0.651 | 0.072 |
Project | Principal Component | ||
---|---|---|---|
F1 | F2 | F3 | |
Steel fiber volume ratio (volume fraction) | −0.057 | 0.305 | −0.601 |
China PVA fiber volume ratio (volume fraction) | −0.344 | 0.062 | 0.199 |
Japan PVA fiber volume ratio (volume fraction) | 0.344 | −0.062 | −0.199 |
Tensile strength | 0.170 | 0.208 | 0.553 |
Compressive strength | −0.150 | 0.572 | 0.036 |
Bending strength | 0.261 | 0.424 | 0.054 |
Test Number | Fiber Volume Content % | Comprehensive Evaluation Score | Ranking | Fiber Cost/(yuan/m3) | ||
Steel Fiber | China PVA Fiber | Japan PVA Fiber | ||||
S0.2C0J2 | 0.2 | 0 | 2.0 | 6.60 | 3 | 1214 |
S0.2C0.5J1.5 | 0.2 | 0.5 | 1.5 | 5.11 | 9 | 3710 |
S0.2C1.0J1.0 | 0.2 | 1.0 | 1.0 | 5.24 | 8 | 6205 |
S0.2C1.5J0.5 | 0.2 | 1.5 | 0.5 | 5.43 | 7 | 8700 |
S0.2C2.0J0 | 0.2 | 2.0 | 0 | 6.30 | 5 | 11,195 |
S0.4C0J2 | 0.4 | 0 | 2.0 | 7.62 | 1 | 11,289 |
S0.4C0.5J1.5 | 0.4 | 0.5 | 1.5 | 4.42 | 10 | 3818 |
S0.4C1J1 | 0.4 | 1.0 | 1.0 | 5.81 | 6 | 6308 |
S0.4C1.5J0.5 | 0.4 | 1.5 | 0.5 | 6.31 | 4 | 8798 |
S0.4C2.0J0 | 0.4 | 2.0 | 0 | 6.66 | 2 | 1327 |
Test Number | Fiber Volume Content % | Experimental Result/MPa | Fiber Cost/(yuan/m3) | ||||
---|---|---|---|---|---|---|---|
Steel Fiber | China PVA Fiber | Japan PVA Fiber | Tensile Strength | Compressive Strength | Bending Strength | ||
S0.4C0J2 | 0.4 | 0 | 2.0 | 3.85 | 45.24 | 11.57 | 11,289 |
S0.4C2.0J0 | 0.4 | 2.0 | 0 | 3.64 | 45.52 | 7.73 | 1327 |
(0.21) | (−0.28) | (3.84) | (9962) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zhang, P. Multi-Objective Optimization and Mechanical Properties Analysis of Steel–PVA Hybrid Fiber-Reinforced Cementitious Composites. Materials 2024, 17, 4324. https://doi.org/10.3390/ma17174324
Wang R, Zhang P. Multi-Objective Optimization and Mechanical Properties Analysis of Steel–PVA Hybrid Fiber-Reinforced Cementitious Composites. Materials. 2024; 17(17):4324. https://doi.org/10.3390/ma17174324
Chicago/Turabian StyleWang, Rui, and Pinle Zhang. 2024. "Multi-Objective Optimization and Mechanical Properties Analysis of Steel–PVA Hybrid Fiber-Reinforced Cementitious Composites" Materials 17, no. 17: 4324. https://doi.org/10.3390/ma17174324
APA StyleWang, R., & Zhang, P. (2024). Multi-Objective Optimization and Mechanical Properties Analysis of Steel–PVA Hybrid Fiber-Reinforced Cementitious Composites. Materials, 17(17), 4324. https://doi.org/10.3390/ma17174324