Development of a Novel Adsorbent Derived from Olive Mill Solid Wastes for Enhanced Removal of Methylene Blue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Procedure for AC Preparation
2.2.1. Pretreatment of OMSW
2.2.2. Chemical Activation of OMSW
2.2.3. Characterization of AC
2.3. Batch Adsorption Experiments
2.3.1. Removal Efficiency
2.3.2. Adsorption Equilibrium Studies
- C0 and Ce (mg·L−1): MB initial and equilibrium concentrations;
- V (L): solution volume;
- m (g): adsorbent mass.
3. Results
3.1. Physico-Chemical Characterization of AC
3.1.1. Surface Area Analysis
3.1.2. X-ray Diffraction (XRD)
3.1.3. FT-IR Analysis
3.1.4. Zeta Potential Measurements
3.1.5. SEM-EDX Analysis
3.2. Adsorption Behavior of MB onto AC
3.2.1. MB Initial Concentration Effect
3.2.2. Influence of Activated Carbon Dosage on Methylene Blue Removal from Aqueous Solutions
3.2.3. Effect of Initial Solution pH
3.3. Adsorption Isotherms
3.3.1. Langmuir Isotherm
- Ce (mg·L−1): equilibrium concentration of MB;
- qe (mg·g−1): MB amount adsorbed at equilibrium time per mass unit of AC;
- qmax (mg·g−1): maximum monolayer adsorption capacity;
- KL (L·mg−1): Langmuir constant.
- CO (mg·L−1): highest initial concentration of MB.
3.3.2. Freundlich Isotherm
3.3.3. Temkin Isotherm
- KT (L·mg−1): equilibrium binding constant;
- β (KJ·mol−1): Temkin constant;
- R (8.314 J·mol−1·K−1): gas constant;
- T (K): absolute temperature.
3.4. Adsorption Kinetics
3.4.1. Pseudo-First Order
3.4.2. Pseudo-Second Order
3.5. Adsorption Mechanism of MB
3.6. Adsorption of Different Types of Pollutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sciubba, F.; Chronopoulou, L.; Pizzichini, D.; Lionetti, V.; Fontana, C.; Aromolo, R.; Socciarelli, S.; Gambelli, L.; Bartolacci, B.; Finotti, E.; et al. Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology 2020, 9, 450. [Google Scholar] [CrossRef] [PubMed]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, S.M.; Riccardi, M.; Menenti, M.; Basile, A.; Bonfante, A.; Lorenzi, F.D. Adaptability of global olive cultivars to water availability under future Mediterranean climate. Mitig. Adapt. Strateg. Glob. Change 2019, 24, 435–466. [Google Scholar] [CrossRef]
- Duman, A.K.; Özgen, G.Ö.; Üçtuğ, F.G. Environmental life cycle assessment of olive pomace utilization in Turkey. Sustain. Prod. Consum. 2020, 22, 126–137. [Google Scholar] [CrossRef]
- Paredes, M.J.; Moreno, E.; Ramos-Cormenzana, A.; Martinez, J. Characteristics of soil after pollution with wastewaters from olive oil extraction plants. Chemosphere 1987, 16, 1557–1564. [Google Scholar] [CrossRef]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem. 2013, 10, 1532–1552. [Google Scholar] [CrossRef]
- Azbar, N.; Bayram, A.; Filibeli, A.; Muezzinoglu, A.; Sengul, F.; Ozer, A. A review of waste management options in olive oil production. Crit. Rev. Environ. Sci. Technol. 2004, 34, 209–247. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Banat, F.; Al-Asheh, S.; Al-Ahmad, R.; Bni-Khalid, F. Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal. Bioresour. Technol. 2007, 98, 3017–3025. [Google Scholar] [CrossRef]
- El-Hamouz, A.; Hilal, H.S.; Nassar, N.; Mardawi, Z. Solid olive waste in environmental cleanup: Oil recovery and carbon production for water purification. J. Environ. Manag. 2007, 84, 83–92. [Google Scholar] [CrossRef]
- Hu, Z.; Srinivasan, M.P. Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater. 1999, 27, 11–18. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Sun, L.; Hu, D.; Zhang, Z.; Deng, X. Oxidative degradation of methylene blue via PDS-based advanced oxidation process using natural pyrite. Int. J. Environ. Res. Public Health 2019, 16, 4773. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, Z.; Baghapour, M.A.; Ranjbar, M.; Faramarzian, M. Adsorption of Methylene Blue Dye from Aqueous Solutions by Modified Pumice Stone: Kinetics and Equilibium Studies. Health Scope 2013, 2, 136–144. [Google Scholar] [CrossRef]
- Allouche, F.N.; Yassaa, N. Potential adsorption of methylene blue from aqueous solution using green macroalgae Posidonia oceanica. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2018. [Google Scholar] [CrossRef]
- Nasri, N.S.; Hamza, U.D.; Ismail, S.N.; Ahmed, M.M.; Mohsin, R. Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. J. Clean. Prod. 2014, 71, 148–157. [Google Scholar] [CrossRef]
- Kopac, T.; Toprak, A. Preparation of activated carbons from Zonguldak region coals by physical and chemical activations for hydrogen sorption. Int. J. Hydrogen. Energy 2007, 32, 5005–5014. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Martínez-Alonso, A.; Suárez-García, F.; Tascón, J.M.D. Synthetic carbons activated with phosphoric acid III. Carbons prepared in air. Carbon 2003, 41, 1181–1191. [Google Scholar] [CrossRef]
- Bagheri, N.; Abedi, J. Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chem. Eng. Res. Des. 2009, 87, 1059–1064. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Zhang, P.; Gao, H.; Ou, C.; Kong, X. Production of activated carbons from four wastes via one-step activation and their applications in Pb2+ adsorption: Insight of ash content. Chemosphere 2020, 245, 125587. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance. Chem. Eng. J. 2012, 184, 57–65. [Google Scholar] [CrossRef]
- Jaouadi, M.; Hbaieb, S.; Guedidi, H.; Reinert, L.; Amdouni, N.; Duclaux, L. Preparation and characterization of carbons from β-cyclodextrin dehydration and from olive pomace activation and their application for boron adsorption. J. Saudi Chem. Soc. 2017, 21, 822–829. [Google Scholar] [CrossRef]
- Demiral, H.; Demiral, I.; Tümsek, F.; Karabacakoǧlu, B. Adsorption of chromium (VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chem. Eng. J. 2008, 144, 188–196. [Google Scholar] [CrossRef]
- Kula, I.; Uǧurlu, M.; Karaoǧlu, H.; Çelik, A. Adsorption of Cd (II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour. Technol. 2008, 99, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface area and pore texture of catalysts. Catal. Today 1998, 41, 207–219. [Google Scholar] [CrossRef]
- Dural, M.U.; Cavas, L.; Papageorgiou, S.K.; Katsaros, F.K. Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chem. Eng. J. 2011, 168, 77–85. [Google Scholar] [CrossRef]
- Kaneko, T.M.; Neimark, K.; Olivier, A.V.; Rodriguez-Reinoso, J.P.; Jean, F.R.; Kenneth, S.W.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Teng, H. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon 2000, 38, 863–869. [Google Scholar] [CrossRef]
- Vargas, A.M.M.; Cazetta, A.L.; Kunita, M.H.; Silva, T.L.; Almeida, V.C. Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chem. Eng. J. 2011, 168, 722–730. [Google Scholar] [CrossRef]
- Wang, S.T.; Hong, J.L. Micro- and Mesoporous Carbons Derived from KOH Activations of Polycyanurates with High Adsorptions for CO2 and Iodine. ACS Omega 2019, 4, 12018–12027. [Google Scholar] [CrossRef]
- Benmahdi, F.; Oulmi, K.; Khettaf, S.; Kolli, M.; Merdrignac-Conanec, O.; Mandin, P. Synthesis and characterization of microporous granular activated carbon from Silver berry seeds using ZnCl2 activation. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 657–669. [Google Scholar] [CrossRef]
- Yang, T.; Lua, A.C. Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells. Mater. Chem. Phys. 2006, 100, 438–444. [Google Scholar] [CrossRef]
- Omri, A.; Benzina, M.; Ammar, N. Preparation, modification and industrial application of activated carbon from almond shell. J. Ind. Eng. Chem. 2013, 19, 2092–2099. [Google Scholar] [CrossRef]
- Marzbali, M.H.; Esmaieli, M.; Abolghasemi, H.; Marzbali, M.H. Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study. Process Saf. Environ. Prot. 2016, 102, 700–709. [Google Scholar] [CrossRef]
- Elkholy, A.S.; Yahia, M.S.; Elnwawy, M.A.; Gomaa, H.A.; Elzaref, S.A. Synthesis of activated carbon composited with Egyptian black sand for enhanced adsorption performance toward methylene blue dye. Sci. Rep. 2023, 13, 4209. [Google Scholar] [CrossRef] [PubMed]
- Bohli1, T.; Fiol, N.; Villaescusa, I.; Ouederni, A. Adsorption on Activated Carbon from Olive Stones: Kinetics and Equilibrium of Phenol Removal from Aqueous Solution. J. Chem. Eng. Process Technol. 2013, 4, 1000165. [Google Scholar] [CrossRef]
- Liu, Q.-X.; Zhou, Y.-R.; Wang, M.; Zhang, Q.; Ji, T.; Chen, T.-Y.; Yu, D.-C. Adsorption of methylene blue from aqueous solution onto viscose-based activated carbon fiber felts: Kinetics and equilibrium studies. Adsorpt. Sci. Technol. 2019, 37, 312–332. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Fytianos, K.; Voudrias, E.; Kokkalis, E. Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments. Chemosphere 2000, 40, 3–6. [Google Scholar] [CrossRef]
- Tuli, F.J.; Hossain, A.; Kibria, A.K.M.F.; Tareq, A.R.M.; Mamun, S.M.M.A.; Ullah, A.K.M.A. Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: A study of adsorption isotherm and kinetics. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100354. [Google Scholar] [CrossRef]
- Spagnoli, A.A.; Gianakoudnakis, D.A.; Bashkova, S. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters. J. Mol. Liq. 2017, 229, 465–471. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zang, H.; Chen, L.; Meng, Z.; Li, H.; Ci, L.; Du, Q.; Wang, D.; Wang, C.; et al. ZnCl2-activated carbon from soybean dregs as a high efficiency adsorbent for cationic dye removal: Isotherm, kinetic, and thermodynamic studies. Environ. Technol. 2020, 41, 2013–2023. [Google Scholar] [CrossRef]
- Hameed, B.H.; Din, A.T.M.; Ahmad, A.L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Dhedan, S.K. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib. 2012, 317, 9–14. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008, 154, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresour. Technol. 2012, 104, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chem. Eng. J. 2011, 173, 385–390. [Google Scholar] [CrossRef]
- Dimbo, D.; Abewaa, M.; Adino, E.; Mengistu, A.; Takele, T.; Oro, A.; Rangaraju, M. Methylene blue adsorption from aqueous solution using activated carbon of spathodea campanulata. Results Eng. 2024, 21, 101910. [Google Scholar] [CrossRef]
- Açikyildiz, M.; Gürses, A.; Karaca, S. Preparation and characterization of activated carbon from plant wastes with chemical activation. Microporous Mesoporous Mater. 2014, 198, 45–49. [Google Scholar] [CrossRef]
- Misran, E.; Bani, O.; Situmeang, E.M.; Purba, A.S. Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability. Alex. Eng. J. 2022, 61, 1946–1955. [Google Scholar] [CrossRef]
- Francis, A.O.; Kevin, O.S.; Zaini, M.A.A. Vitex doniana seed activated carbon for methylene blue adsorption: Equilibrium and kinetics. Int. J. Phytorem. 2023, 25, 1625–1635. [Google Scholar] [CrossRef]
- Attia, A.A.; Girgis, B.S.; Fathy, N.A. Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies. Dye. Pigment. 2008, 76, 282–289. [Google Scholar] [CrossRef]
Material | SBET (m2·g−1) | VT (cm3·g−1) | V micro (cm3·g−1) | V meso (cm3·g−1) |
---|---|---|---|---|
OMSW | 1184 | 0.824 | 0.055 | 0.769 |
MB Concentration (mg·L−1) | qe (mg·g−1) |
---|---|
50 | 128.35 |
100 | 226.11 |
150 | 286.94 |
200 | 311.45 |
Type of Isotherm | Parameters | Values |
---|---|---|
Langmuir | qm (mg·g−1) | 500 |
KL (L·mg−1) | 0.132 | |
RL | 0.0245 | |
R2 | 0.985 | |
Freundlich | KF [(mg·g−1)(mg−1)1/n] | 176.65 |
1/n | 0.197 | |
R2 | 0.959 | |
Temkin | β | 53.45 |
KT | 30.32 | |
R2 | 0.969 |
Adsorbents | SBET (m2·g−1) | Activating Agent | qm (mg·g−1) | Adsorbent Dose (g·L−1) | pH | Reference |
---|---|---|---|---|---|---|
Tea waste | 850.58 | H3PO4 | 238.1 | 0.15 | - | [40] |
Posidonia oceanica L. | 1483 | ZnCl2 | 217.39 | 10 | 6.5 | [26] |
Cashew nut shells | 1871 | ZnCl2 | 476 | 1.25 | 7 | [41] |
Soybean dregs | 643.58 | ZnCl2 | 255.1 | 0.5 | 6 | [42] |
Bamboo | 1896 | KOH, CO2 | 454.2 | 1 | 7 | [43] |
Date stones | 1045.61 | ZnCl2 | 369.38 | 0.5 | 7 | [44] |
Coconut husk | 1940 | KOH, CO2 | 434.78 | 1 | 7 | [45] |
Orange peel | 1104 | K2CO3 | 382.8 | 1 | 6 | [46] |
Pomelo skin | 1335 | NaOH | 501.1 | 1 | 6 | [47] |
Spathodea campanulata | 1054.08 | H3PO4 | 86.207 | 2 | 9 | [48] |
Rose seeds | 1265 | ZnCl2 | 288.01 | 4 | - | [49] |
Banana stem | 837.453 | H3PO4 | 101.01 | 2 | 7 | [50] |
Vitex doniana seed | 933 | ZnCl2 | 238 | 1 | - | [51] |
Peach stone | 1298 | H3PO4 | 412 | 1 | - | [52] |
Olive mill solid waste | 1183 | ZnCl2 | 500 | 0.4 | 6.38 | This work |
C0 (mg·L−1) | qe exp (mg·g−1) | Pseudo-First Order | Pseudo-Second Order | ||||
---|---|---|---|---|---|---|---|
K1 (min−1) | qe (mg·g−1) | R2 | K2 (g·mg−1. min−1) | qe (mg·g−1) | R2 | ||
50 | 128.35 | 0.0178 | 24.06 | 0.9345 | 0.0017 | 129.87 | 1 |
100 | 226.11 | 0.0101 | 100.57 | 0.9509 | 0.00027 | 227.27 | 0.9952 |
150 | 286.94 | 0.0067 | 121.41 | 0.9813 | 0.00023 | 278.55 | 0.9968 |
Pollutants | Adsorption (%) |
---|---|
MO | 95 |
RhB | 97.57 |
TC | 87.19 |
Cipro | 97.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamieh, M.; Tabaja, N.; Tlais, S.; Koubaissy, B.; Hammoud, M.; Chawraba, K.; Hamieh, T.; Toufaily, J. Development of a Novel Adsorbent Derived from Olive Mill Solid Wastes for Enhanced Removal of Methylene Blue. Materials 2024, 17, 4326. https://doi.org/10.3390/ma17174326
Hamieh M, Tabaja N, Tlais S, Koubaissy B, Hammoud M, Chawraba K, Hamieh T, Toufaily J. Development of a Novel Adsorbent Derived from Olive Mill Solid Wastes for Enhanced Removal of Methylene Blue. Materials. 2024; 17(17):4326. https://doi.org/10.3390/ma17174326
Chicago/Turabian StyleHamieh, Malak, Nabil Tabaja, Sami Tlais, Bachar Koubaissy, Mohammad Hammoud, Khaled Chawraba, Tayssir Hamieh, and Joumana Toufaily. 2024. "Development of a Novel Adsorbent Derived from Olive Mill Solid Wastes for Enhanced Removal of Methylene Blue" Materials 17, no. 17: 4326. https://doi.org/10.3390/ma17174326
APA StyleHamieh, M., Tabaja, N., Tlais, S., Koubaissy, B., Hammoud, M., Chawraba, K., Hamieh, T., & Toufaily, J. (2024). Development of a Novel Adsorbent Derived from Olive Mill Solid Wastes for Enhanced Removal of Methylene Blue. Materials, 17(17), 4326. https://doi.org/10.3390/ma17174326