Influence of Defects and Microstructure on the Thermal Expansion Behavior and the Mechanical Properties of Additively Manufactured Fe-36Ni
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Statistical Analysis of the DOE
3.2. Microstructure Characterization
3.3. Behavior under Quasi-Static Loading
4. Summary and Conclusions
- In contrast to the statements provided in literature, no generally valid positive effect of increased porosity on thermal expansion could be revealed in the present study (considering by far the largest processing window in the literature). Both, high and low relative density parameter combinations are characterized by low thermal expansion. This is also underlined by statistical analysis of the DOE as Pearson’s correlation coefficients close to zero are reported for a correlation between CTE and density. Most importantly, many parameter combinations show the characteristic CTE of Invar within the temperature range from 50–200 °C.
- The microstructure being established by the different parameter combinations differs significantly. For example, high volume energy results in a coarse-grained columnar structure, whereas lower volume energies lead to a sickle-shaped fan-like grain structure following the size of the melt pools.
- Depending on the volume energy of the parameter sets used during PBF-LB/M, the microstructures of the conditions investigated reveal different defect types such as lack of fusion or keyhole porosity. A correlation between defect type and thermal expansion behavior could not be found.
- The different relative densities and microstructures also affect the mechanical behavior, as revealed by tensile testing. Low-density specimens show significantly reduced elongation at fracture, whereas high densities result in elongations at fractures of up to 50%. A coarse-grained columnar microstructure with few grain boundaries perpendicular to the loading direction presumably leads to reduced ultimate tensile strength.
- The results from the tensile tests are confirmed by fracture-surface analysis. Specimens with high elongation at fracture are characterized by pronounced necking, leading to a well-known cup and cone fracture shape.
- The results of the present investigation confirm the high potential of Invar to exhibit low-thermal expansion over a wide range of processing parameters. In addition, it is possible to specifically adjust the microstructure in order to adapt the mechanical properties to envisaged applications.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guillaume, C.E. Invar and Its Applications. Nature 1904, 71, 134–139. [Google Scholar] [CrossRef]
- Yokoyama, T.; Eguchi, K. Anharmonicity and quantum effects in thermal expansion of an Invar alloy. Phys. Rev. Lett. 2011, 107, 65901. [Google Scholar] [CrossRef]
- Cardona, M.; Fulde, P.; Klitzing, K.; Queisser, H.-J.; Lotsch, H.K.V.; Ishikawa, Y.; Miura, N. Physics and Engineering Applications of Magnetism; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-84160-6. [Google Scholar]
- Kim, S.-H.; Choi, S.-G.; Choi, W.-K.; Lee, E.-S. Surface characteristics of Invar alloy according to micro-pulse electrochemical machining. Mater. Tehnol. 2017, 51, 745–749. [Google Scholar] [CrossRef]
- Mills, B. Machinability of Engineering Materials; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9789400966314. [Google Scholar]
- Yakout, M.; Cadamuro, A.; Elbestawi, M.A.; Veldhuis, S.C. The selection of process parameters in additive manufacturing for aerospace alloys. Int. J. Adv. Manuf. Technol. 2017, 92, 2081–2098. [Google Scholar] [CrossRef]
- Asgari, H.; Salarian, M.; Ma, H.; Olubamiji, A.; Vlasea, M. On thermal expansion behavior of invar alloy fabricated by modulated laser powder bed fusion. Mater. Des. 2018, 160, 895–905. [Google Scholar] [CrossRef]
- Kim, S.-H.; Sohn, H.-J.; Joo, Y.-C.; Kim, Y.-W.; Yim, T.-H.; Lee, H.-Y.; Kang, T. Effect of saccharin addition on the microstructure of electrodeposited Fe–36 wt.% Ni alloy. Surf. Coat. Technol. 2005, 199, 43–48. [Google Scholar] [CrossRef]
- Schmidt, M.; Merklein, M.; Bourell, D.; Dimitrov, D.; Hausotte, T.; Wegener, K.; Overmeyer, L.; Vollertsen, F.; Levy, G.N. Laser based additive manufacturing in industry and academia. CIRP Ann. 2017, 66, 561–583. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Murr, L.E.; Gaytan, S.M.; Ramirez, D.A.; Martinez, E.; Hernandez, J.; Amato, K.N.; Shindo, P.W.; Medina, F.R.; Wicker, R.B. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. J. Mater. Sci. Technol. 2012, 28, 1–14. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Seifi, M. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. 2016, 46, 151–186. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Beyer, C. Strategic Implications of Current Trends in Additive Manufacturing. J. Manuf. Sci. Eng. 2014, 136, 064701. [Google Scholar] [CrossRef]
- Li, P.; Warner, D.H.; Fatemi, A.; Phan, N. Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research. Int. J. Fatigue 2016, 85, 130–143. [Google Scholar] [CrossRef]
- Wegener, T.; Brenne, F.; Fischer, A.; Möller, T.; Hauck, C.; Auernhammer, S.; Niendorf, T. On the structural integrity of Fe-36Ni Invar alloy processed by selective laser melting. Addit. Manuf. 2021, 37, 101603. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A.; Veldhuis, S.C. A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L. Addit. Manuf. 2018, 24, 405–418. [Google Scholar] [CrossRef]
- Khanna, N.; Mistry, S.; Rahman Rashid, R.A.; Gupta, M.K. Investigations on density and surface roughness characteristics during selective laser sintering of Invar-36 alloy. Mater. Res. Express 2019, 6, 86541. [Google Scholar] [CrossRef]
- Obidigbo, C.; Tatman, E.-P.; Gockel, J. Processing parameter and transient effects on melt pool geometry in additive manufacturing of Invar 36. Int. J. Adv. Manuf. Technol. 2019, 104, 3139–3146. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A.; Veldhuis, S.C. Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. J. Mater. Process. Technol. 2019, 266, 397–420. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, C.; Chang, Z.; Zhan, X.; Zeng, C. Microstructure evolution mechanism of single and multi-pass in laser cladding based on heat accumulation effect for invar alloy. Int. J. Adv. Manuf. Technol. 2021, 117, 3447–3463. [Google Scholar] [CrossRef]
- Qiu, C.; Adkins, N.J.; Attallah, M.M. Selective laser melting of Invar 36: Microstructure and properties. Acta Mater. 2016, 103, 382–395. [Google Scholar] [CrossRef]
- Harrison, N.J.; Todd, I.; Mumtaz, K. Thermal expansion coefficients in Invar processed by selective laser melting. J. Mater. Sci. 2017, 52, 10517–10525. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Beausir, B.; Fundenberger, J.-J. Analysis Tools for Electron and X-ray Diffraction, ATEX—Software. Université de Lorraine—Metz. 2017. Available online: www.atex-software.eu (accessed on 15 August 2024).
- EN ISO 6507-1:2018; Metallische Werkstoffe—Härteprüfung nach Vickers: Teil 1: Prüfverfahren. ISO: Geneva, Switzerland, 2018.
- Oevermann, T.; Wegener, T.; Niendorf, T. On the Evolution of Residual Stresses, Microstructure and Cyclic Performance of High-Manganese Austenitic TWIP-Steel after Deep Rolling. Metals 2019, 9, 825. [Google Scholar] [CrossRef]
- Minitab, L.L. Minitab. Available online: https://www.minitab.com (accessed on 10 August 2024).
- Chikazumi, S. Invar anomalies. J. Magn. Magn. Mater. 1979, 10, 113–119. [Google Scholar] [CrossRef]
- Yang, Q.; Wei, K.; Yang, X.; Xie, H.; Qu, Z.; Fang, D. Microstructures and unique low thermal expansion of Invar 36 alloy fabricated by selective laser melting. Mater. Charact. 2020, 166, 110409. [Google Scholar] [CrossRef]
- Aydinöz, M.E.; Brenne, F.; Schaper, M.; Schaak, C.; Tillmann, W.; Nellesen, J.; Niendorf, T. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater. Sci. Eng. A 2016, 669, 246–258. [Google Scholar] [CrossRef]
- Niendorf, T.; Leuders, S.; Riemer, A.; Richard, H.A.; Tröster, T.; Schwarze, D. Highly Anisotropic Steel Processed by Selective Laser Melting. Met. Mater. Trans. B 2013, 44, 794–796. [Google Scholar] [CrossRef]
- Niendorf, T.; Leuders, S.; Riemer, A.; Brenne, F.; Tröster, T.; Richard, H.A.; Schwarze, D. Functionally Graded Alloys Obtained by Additive Manufacturing. Adv. Eng. Mater. 2014, 16, 857–861. [Google Scholar] [CrossRef]
- Engelhardt, A.; Kahl, M.; Richter, J.; Krooß, P.; Kroll, A.; Niendorf, T. Investigation of processing windows in additive manufacturing of AlSi10Mg for faster production utilizing data-driven modeling. Addit. Manuf. 2022, 55, 102858. [Google Scholar] [CrossRef]
- Yang, G.; Xie, Y.; Zhao, S.; Qin, L.; Wang, X.; Wu, B. Quality Control: Internal Defects Formation Mechanism of Selective Laser Melting Based on Laser-powder-melt Pool Interaction: A Review. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100037. [Google Scholar] [CrossRef]
- Zerbst, U.; Bruno, G.; Buffiere, J.-Y.; Wegener, T.; Niendorf, T.; Wu, T.; Zhang, X.; Kashaev, N.; Meneghetti, G.; Hrabe, N.; et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges. Prog. Mater. Sci. 2021, 121, 100786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Y.; Bai, Q. Defect Formation Mechanisms in Selective Laser Melting: A Review. Chin. J. Mech. Eng. 2017, 30, 515–527. [Google Scholar] [CrossRef]
- Röttger, A.; Boes, J.; Theisen, W.; Thiele, M.; Esen, C.; Edelmann, A.; Hellmann, R. Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices. Int. J. Adv. Manuf. Technol. 2020, 108, 769–783. [Google Scholar] [CrossRef]
- Kahlert, M.; Brenne, F.; Vollmer, M.; Niendorf, T. Influence of Microstructure and Defects on Mechanical Properties of AISI H13 Manufactured by Electron Beam Powder Bed Fusion. J. Mater. Eng. Perform. 2021, 30, 6895–6904. [Google Scholar] [CrossRef]
- Lumley, R.; Morton, A.; Polmear, I. Nanoengineering of metallic materials. In Nanostructure Control of Materials; Elsevier: Amsterdam, The Netherlands, 2006; pp. 219–250. ISBN 9781855739338. [Google Scholar]
- Wei, K.; Yang, Q.; Ling, B.; Yang, X.; Xie, H.; Qu, Z.; Fang, D. Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Mater. Sci. Eng. A 2020, 772, 138799. [Google Scholar] [CrossRef]
DOE Number | Nomenclature | P in W | vs in mm/s | h in mm | t in mm | EV in J/mm3 | Density in % |
---|---|---|---|---|---|---|---|
1 | P 1 | 100 | 700 | 0.05 | 0.05 | 57 | 86.37 |
28 | P 28 | 200 | 700 | 0.1 | 0.1 | 29 | 98.02 |
47 | P 47 | 200 | 1000 | 0.15 | 0.05 | 27 | 91.58 |
56 | P 56 | 300 | 800 | 0.05 | 0.1 | 75 | 97.25 |
61 | P 61 | 300 | 900 | 0.05 | 0.05 | 133 | 97.7 |
70 | P 70 | 300 | 1000 | 0.1 | 0.1 | 30 | 98.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahlert, M.; Wegener, T.; Laabs, L.; Vollmer, M.; Niendorf, T. Influence of Defects and Microstructure on the Thermal Expansion Behavior and the Mechanical Properties of Additively Manufactured Fe-36Ni. Materials 2024, 17, 4313. https://doi.org/10.3390/ma17174313
Kahlert M, Wegener T, Laabs L, Vollmer M, Niendorf T. Influence of Defects and Microstructure on the Thermal Expansion Behavior and the Mechanical Properties of Additively Manufactured Fe-36Ni. Materials. 2024; 17(17):4313. https://doi.org/10.3390/ma17174313
Chicago/Turabian StyleKahlert, Moritz, Thomas Wegener, Leonard Laabs, Malte Vollmer, and Thomas Niendorf. 2024. "Influence of Defects and Microstructure on the Thermal Expansion Behavior and the Mechanical Properties of Additively Manufactured Fe-36Ni" Materials 17, no. 17: 4313. https://doi.org/10.3390/ma17174313
APA StyleKahlert, M., Wegener, T., Laabs, L., Vollmer, M., & Niendorf, T. (2024). Influence of Defects and Microstructure on the Thermal Expansion Behavior and the Mechanical Properties of Additively Manufactured Fe-36Ni. Materials, 17(17), 4313. https://doi.org/10.3390/ma17174313