Inverse Identification of Constitutive Model for GH4198 Based on Genetic–Particle Swarm Algorithm
Abstract
:1. Introduction
2. Quasi-Static Tensile Test
3. Orthogonal Cutting Experiment and Model
3.1. Orthogonal Cutting Experiment
3.2. Orthogonal Cutting Model
4. Inverse Identification of the J–C Constitutive Model
4.1. The Inverse Identification Process for the Constitutive Model
4.2. The Results and Analysis of the GH4198 Constitutive Model
5. Validation of Constitutive Model Based on Finite-Element Analysis
5.1. Establishment of the Finite-Element Model
5.2. Constitutive Model Validation and Discussion
5.3. The Influence of Constitutive Parameters on Simulated Observations
6. Conclusions
- Quasi-static tensile tests were conducted at different strain rates. The results indicated that at lower strain rates, as the strain rate decreased, the material’s initial yield strength (A) and work hardening exponent (n) showed an increasing trend, while the strain hardening coefficient (B) showed a decreasing trend.
- Orthogonal cutting experiments were conducted, and a genetic–particle swarm algorithm model based on the unequal division shear theory was proposed. The results indicated that the maximum predicted error of shear angle was 8.8%, validating that the method of determining shear angle through exhaustive iteration was reasonable.
- The cutting finite-element model was established based on the inverse identification of the J–C constitutive model. The simulation results were compared with experimental values, showing high consistency, which demonstrated the effectiveness of the J–C constitutive model.
- The sensitivity analysis of the J–C constitutive model on simulated observables was conducted. The results revealed that the thermal softening coefficient (m) had a greater influence on the simulation results of chip geometry features, while the strain-rate hardening coefficient (C) had a more significant effect on the simulation results of cutting forces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.L.; Tan, H.B.; Meng, L.C.; Fu, R.; Zhong, Y.; Du, J. Microstructural characteristics and segregation behavior of a newly developed cast & wrought superalloy GH4198. Chin. J. Rare Met. 2020, 44, 807–815. (In Chinese) [Google Scholar]
- Gu, Y.; Cui, C.; Yuan, Y.; Zhong, Z. Research progress in a high performance cast & wrought superalloy for turbine disc applications. Acta Metall. Sin. 2015, 51, 1191–1206. (In Chinese) [Google Scholar]
- Zhang, R.; Liu, P.; Cui, C.; Qu, J.; Zhang, B.; Du, J.; Zhou, Y.; Sun, X. Present research situation and prospect of hot working of cast & wrought superalloys for aero-engine turbine disk in China. Acta Metall. Sin. 2021, 57, 1215–1228. (In Chinese) [Google Scholar]
- Jin, Q.; Zhang, J.; Tan, H.; Li, F.; Fu, R.; Guo, L. Research on turning machinability of a new GH4198 superalloy. Adv. Aeronaut. Sci. Eng. 2024, 2024, 1–9. (In Chinese) [Google Scholar]
- Molinari, A.; Ravichandran, G. Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length. Mech. Mater. 2005, 37, 737–752. [Google Scholar] [CrossRef]
- Žmindák, M.; Novak, P.; Soukup, J.; Milosavljevic, D.; Kaco, M. Finite element simulation of tensile test of composite materials manufactured by 3D printing. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 776, p. 012082. [Google Scholar]
- Johnson, G.R.A. Constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, Hague, The Netherlands, 19–21 April 1983. [Google Scholar]
- Ducobu, F.; Rivière-Lorphèvre, E.; Filippi, E. On the importance of the choice of the parameters of the Johnson-Cook constitutive model and their influence on the results of a Ti6Al4V orthogonal cutting model. Int. J. Mech. Sci. 2017, 122, 143–155. [Google Scholar] [CrossRef]
- Lin, Z.; Zihao, W.; Heming, W.E.N. On the accuracy of the Johnson-Cook constitutive model for metals. Chin. J. High Press. Phys. 2019, 33, 1. [Google Scholar]
- Wang, B. Influence Mechanism of Material Deformation and Fracture Behavior on Chip Formation During High Speed Machining; Shandong University: Shandong, China, 2016. [Google Scholar]
- Li, L.; Zhang, X.F.; Wu, X. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses. Chin. J. High Press. Phys. 2017, 31, 239–248. (In Chinese) [Google Scholar]
- Yan, H.Z.; Gong, L.J. Constitutive model and finite element simulation of 20CrMo material. J. Cent. South Univ. (Sci. Technol.) 2012, 43, 4268–4273. (In Chinese) [Google Scholar]
- Grązka, M.; Janiszewski, J.; Kruszka, L.; Cadoni, E.; Forni, D.; Riganti, G. Identification methods of parameters for Johnson-Cook constitutive equation–comparison. Appl. Mech. Mater. 2014, 566, 97–103. [Google Scholar] [CrossRef]
- Tang, Q. Identification of JC Constitutive Model Parameters and Tool-Chip Friction Coefficient for 45# Steel Cutting; Huazhong University of Science and Technology: Wuhan, China, 2015. (In Chinese) [Google Scholar]
- Shen, X.; Zhang, D.; Yao, C.; Tan, L.; Li, X. Research on parameter identification of Johnson–Cook constitutive model for TC17 titanium alloy cutting simulation. Mater. Today Commun. 2022, 31, 103772. [Google Scholar] [CrossRef]
- Tounsi, N.; Vincenti, J.; Otho, A.; Elbestawi, M.A. From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation. Int. J. Mach. Tools Manuf. 2002, 42, 1373–1383. [Google Scholar] [CrossRef]
- Chen, B.; Liu, W.; Luo, M.; Zhang, X. Reverse identification of John-Cook constitutive parameters of superalloy based on orthogonal cutting. J. Mech. Eng. 2019, 55, 217–224. (In Chinese) [Google Scholar] [CrossRef]
- Wang, F.L.; Xiao, Q.; Lai, S.; Tang, Y. Reverse identification of constitutive parameters of ZM5 magnesium alloy based on unequal shear model. China Mech. Eng. 2023, 34, 2362–2369. (In Chinese) [Google Scholar]
- Li, X.; Wei, Z.; Guo, M.; Wang, M.; Guo, J.; Gao, W.; Sun, F. Reverse identification of Johnson-Cook Constitutive parameters of 316H stainless steels considering thermoplastic deformations. China Mech. Eng. 2022, 33, 864. (In Chinese) [Google Scholar]
- Nguyen, N.; Hosseini, A. Direct calculation of Johnson-Cook constitutive material parameters for oblique cutting operations. J. Manuf. Process. 2023, 92, 226–237. [Google Scholar] [CrossRef]
- Shrot, A.; Bäker, M. How to identify Johnson-Cook parameters from machining simulations. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2011; Volume 1353, pp. 29–34. [Google Scholar]
- Tian, P.; He, L.; Zhou, T.; Du, F.; Zou, Z.; Zhou, X.; Jiang, H. Reverse identification of constitutive parameters of Inconel 718 alloy based on analytical model and thermo-mechanical loads analysis of machined surface. J. Mater. Res. Technol. 2022, 16, 1353–1370. [Google Scholar] [CrossRef]
- Linjiang, H.E.; Honghua, S.U.; Jiuhua, X.U.; Zhang, L. Inverse identification of constitutive parameters of Ti2AlNb intermetallic alloys based on cooperative particle swarm optimization. Chin. J. Aeronaut. 2018, 31, 1774–1785. [Google Scholar]
- Zou, Z.; He, L.; Zhou, T.; Zhang, W.; Tian, P.; Zhou, X. Research on inverse identification of Johnson-Cook constitutive parameters for turning 304 stainless steel based on coupling simulation. J. Mater. Res. Technol. 2023, 23, 2244–2262. [Google Scholar] [CrossRef]
- Zhou, T.; He, L.; Feng, Z.; Tian, P.; Du, F.; Zou, Z.; Zhou, X. Inverse identification of material constitutive parameters based on co-simulation. J. Mater. Res. Technol. 2022, 20, 221–237. [Google Scholar] [CrossRef]
- Cao, Y.; Zhen, Y.; Song, M.; Yi, H.; Li, F.; Li, X. Determination of Johnson–Cook parameters and evaluation of Charpy impact test performance for X80 pipeline steel. Int. J. Mech. Sci. 2020, 179, 105627. [Google Scholar] [CrossRef]
- Oxley, P.; Young, H.T. The mechanics of machining: An analytical approach to assessing machinability. Wear 1990, 150, 380–381. [Google Scholar] [CrossRef]
- Pang, L.; Kishawy, H.A. Modified primary shear zone analysis for identification of material mechanical behavior during machining process using genetic algorithm. J. Manuf. Sci. Eng. 2012, 134, 041003. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Hu, Y.; Li, C. Analytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone model. Int. J. Adv. Manuf. Technol. 2011, 54, 431–443. [Google Scholar] [CrossRef]
- Boothroyd, G. Temperatures in orthogonal metal cutting. Proc. Inst. Mech. Eng. 1963, 177, 789–810. [Google Scholar]
- Lalwani, D.I.; Mehta, N.K.; Jain, P.K. Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model. J. Mater. Process. Technol. 2009, 209, 5305–5312. [Google Scholar] [CrossRef]
- Zhou, T.; He, L.; Zou, Z.; Du, F.; Wu, J.; Tian, P. Three-dimensional turning force prediction based on hybrid finite element and predictive machining theory considering edge radius and nose radius. J. Manuf. Process. 2020, 58, 1304–1317. [Google Scholar] [CrossRef]
- Waldorf, D.J.; DeVor, R.E.; Kapoor, S.G. A slip-line field for ploughing during orthogonal cutting. J. Manuf. Sci. Eng. 1998, 120, 693–699. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, Y.H.; Zhao, C.J.; Chen, W.; Tan, X.; Liang, Z.; Pan, Z.; Wang, F. Inversion analysis of thermal parameters of different materials in ultra-high arch dam based on mixed particle swarm algorithm. J. Tsinghua Univ. (Nat. Sci. Ed.) 2021, 61, 747–755. (In Chinese) [Google Scholar]
- Harzallah, M.; Pottier, T.; Gilblas, R.; Landon, Y.; Mousseigne, M.; Senatore, J. Thermomechanical coupling investigation in Ti-6Al-4V orthogonal cutting: Experimental and numerical confrontation. Int. J. Mech. Sci. 2020, 169, 105322. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, W.; Jiang, R.; Lin, K.; Shao, M. Mechanisms and FEM simulation of chip formation in orthogonal cutting in-situ TiB2/7050Al MMC. Materials 2018, 11, 606. [Google Scholar] [CrossRef]
- Liu, G.; Shah, S.; Özel, T. Material ductile failure-based finite element simulations of chip serration in orthogonal cutting of titanium alloy Ti-6Al-4V. J. Manuf. Sci. Eng. 2019, 141, 041017. [Google Scholar] [CrossRef]
- Duan, C.Z.; Wang, Z.X.; Li, H.H. Finite element simulation of the formation process of a serrated chip in high-speed cutting. J. Harbin Eng. Univ. 2014, 35, 226–262. (In Chinese) [Google Scholar]
- Umbrello, D. Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J. Mater. Process. Technol. 2008, 196, 79–87. [Google Scholar] [CrossRef]
- Xu, X.; Outeiro, J.; Zhang, J.; Xu, B.; Zhao, W.; Astakhov, V. Machining simulation of Ti6Al4V using coupled Eulerian-Lagrangian approach and a constitutive model considering the state of stress. Simul. Model. Pract. Theory 2021, 110, 102312. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Melkote, S.N.; Grzesik, W.; Outeiro, J.; Rech, J.; Schulze, V.; Attia, H.; Arrazola, P.J.; M’Saoubi, R.; Saldana, C. Advances in material and friction data for modelling of metal machining. Cirp Ann. 2017, 66, 731–754. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z. Shear localization sensitivity analysis for Johnson–Cook constitutive parameters on serrated chips in high speed machining of Ti6Al4V. Simul. Model. Pract. Theory 2015, 55, 63–76. [Google Scholar] [CrossRef]
Element | Cr | Co | W | Mo | Ti | Al | Nb | Ta | C | B | Zr | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Percentage | 13.0 | 20.5 | 2.3 | 3.8 | 3.8 | 3.4 | 1.0 | 2.5 | 0.05 | 0.015 | 0.05 | Base |
Sample | Max Load (N) | Max Displacement (mm) | Tensile Strength (MPa) | |
---|---|---|---|---|
M1 | 0.01 | 28,569.2 | 4.653 | 1454.232 |
M2 | 0.001 | 30,378.3 | 4.635 | 1547.154 |
M3 | 0.0002 | 29,971.0 | 5.033 | 1526.412 |
Sample | A (Mpa) | B (Mpa) | n | |
---|---|---|---|---|
M1 | 0.01 | 1136.234 | 1179.481 | 0.502 |
M2 | 0.001 | 1138.895 | 1156.603 | 0.541 |
M3 | 0.0002 | 1157.537 | 1138.349 | 0.686 |
NO. | Feed Rate vf (mm/r) | Cutting Speed v (m/min) | Chip Thickness achip (mm) | FC (N) | FT (N) | Experiment (°) | Prediction p (°) | Error |
---|---|---|---|---|---|---|---|---|
1 | 0.05 | 10 | 0.186 | 654.3 | 502.8 | 16.0 | 17.4 | 8.8% |
2 | 0.05 | 20 | 0.133 | 613.6 | 481.3 | 21.7 | 22.4 | 3.2% |
3 | 0.05 | 30 | 0.098 | 533.8 | 464.4 | 31.4 | 29.1 | 7.3% |
4 | 0.10 | 10 | 0.287 | 967.4 | 815.7 | 20.2 | 21.3 | 5.5% |
5 | 0.10 | 20 | 0.229 | 906.3 | 763.9 | 25.2 | 24.4 | 3.2% |
6 | 0.10 | 30 | 0.160 | 853.6 | 682.5 | 35.1 | 37.0 | 5.4% |
7 | 0.15 | 10 | 0.351 | 1107.5 | 916.3 | 23.9 | 25.4 | 6.3% |
8 | 0.15 | 20 | 0.310 | 1030.7 | 883.6 | 27.8 | 29.5 | 6.1% |
9 | 0.15 | 30 | 0.281 | 974.5 | 784.2 | 37.6 | 34.5 | 8.2% |
Sample | C | m | |
---|---|---|---|
M1 | 0.01 | 0.060 | 1.772 |
M2 | 0.001 | 0.059 | 1.586 |
M3 | 0.0002 | 0.060 | 1.354 |
NO. | Temperature (°) | Density (g·cm−3) | Poisson’s Ratio | Young’s Modulus (GPa) | Specific Heat (J·g−1·K−1) | Expansion Coefficient (10−6 °C−1) | Thermal Conductivity (W·m−1·K−1) |
---|---|---|---|---|---|---|---|
1 | 25 | 8.30 | 0.28 | 229 | 1.08 | 11.69 | 23.2 |
2 | 100 | 0.29 | 226 | 0.95 | 13.19 | 22.8 | |
3 | 200 | 0.29 | 220 | 1.05 | 13.84 | 27.7 | |
4 | 300 | 0.30 | 213 | 1.08 | 14.05 | 30.6 | |
5 | 400 | 0.30 | 207 | 1.19 | 14.03 | 36.4 | |
6 | 500 | 0.30 | 200 | 1.16 | 16.51 | 37.4 | |
7 | 600 | 0.31 | 193 | 1.08 | 16.65 | 36.9 | |
8 | 700 | 0.31 | 185 | 0.86 | 20.37 | 31.1 | |
9 | 800 | 0.32 | 176 | 0.74 | 21.53 | 27.6 | |
10 | 900 | 0.32 | 166 | 0.56 | 22.69 | 21.2 |
D1 | D2 | D3 | D4 | D5 |
---|---|---|---|---|
0.034 | 0.015 | 1.357 | −0.773 | 1.906 |
NO. | Experimental | Simulation | Simulation Observables | Rexp | Rsim | Error |
---|---|---|---|---|---|---|
1 | achip | 0.181 | 0.167 | 7.7% | ||
Gs | 0.103 | 0.114 | 10.7% | |||
FC | 654.3 | 511.7 | 21.8% | |||
2 | achip | 0.133 | 0.127 | 4.5% | ||
Gs | 0.122 | 0.133 | 9.0% | |||
FC | 613.6 | 463.2 | 24.5% | |||
5 | achip | 0.229 | 0.221 | 3.5% | ||
Gs | 0.357 | 0.384 | 7.6% | |||
FC | 906.3 | 714.6 | 21.2% | |||
6 | achip | 0.160 | 0.140 | 12.5% | ||
Gs | 0.584 | 0.607 | 3.9% | |||
FC | 853.6 | 667.8 | 21.7% | |||
8 | achip | 0.310 | 0.308 | 0.7% | ||
Gs | 0.420 | 0.400 | 4.8% | |||
FC | 1030.7 | 874.5 | 15.2% |
J–C | −75% | −50% | −25% | +0% | +25% | +50% | +75% |
---|---|---|---|---|---|---|---|
C | 0.015 | 0.030 | 0.044 | 0.059 | 0.074 | 0.089 | 0.103 |
m | 0.397 | 0.793 | 1.190 | 1.586 | 1.983 | 2.379 | 2.776 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Q.; Li, J.; Li, F.; Fu, R.; Yu, H.; Guo, L. Inverse Identification of Constitutive Model for GH4198 Based on Genetic–Particle Swarm Algorithm. Materials 2024, 17, 4274. https://doi.org/10.3390/ma17174274
Jin Q, Li J, Li F, Fu R, Yu H, Guo L. Inverse Identification of Constitutive Model for GH4198 Based on Genetic–Particle Swarm Algorithm. Materials. 2024; 17(17):4274. https://doi.org/10.3390/ma17174274
Chicago/Turabian StyleJin, Qichao, Jun Li, Fulin Li, Rui Fu, Hongyu Yu, and Lei Guo. 2024. "Inverse Identification of Constitutive Model for GH4198 Based on Genetic–Particle Swarm Algorithm" Materials 17, no. 17: 4274. https://doi.org/10.3390/ma17174274
APA StyleJin, Q., Li, J., Li, F., Fu, R., Yu, H., & Guo, L. (2024). Inverse Identification of Constitutive Model for GH4198 Based on Genetic–Particle Swarm Algorithm. Materials, 17(17), 4274. https://doi.org/10.3390/ma17174274