Effect of Extrusion Process on Microstructure, Corrosion Properties, and Mechanical Properties of Micro-Alloyed Mg–Zn–Ca–Zr Alloy
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Preparation and Characterization of Materials
2.2. Phase Diagram Calculation
2.3. Corrosion Tests
2.4. Microscopic Corrosion Morphology Observation
2.5. Mechanical Properties
3. Result
3.1. Microstructure
3.2. Corrosion Properties
3.3. Microscopic Corrosion Morphology Analysis
3.4. Mechanical Properties
4. Discussion
4.1. Phase Formation
4.2. Influence of Zr-Rich Phase on Corrosion Behavior
5. Conclusions
- In addition to a small amount of Zr-rich phase, no other precipitated phase was detected in the homogenized alloy. After extrusion at 320 °C and 350 °C, the size of Zr-rich particles was significantly reduced, and the extrusion temperature has little effect on the size of Zr-rich particles. However, the mechanical properties of the alloy decrease with an increase in extrusion temperature.
- The corrosion rate of the alloy decreases after extrusion. This is because the smaller Zr-rich phase is easier to cover by the deposited corrosion products, which reduced the cathodic activity of the Zr-rich phase in the extruded alloys. Additionally, a much smaller grain size can promote the formation of a more uniform corrosion film on the surface of the extruded alloys.
- The alloy extruded at 320 °C shows good comprehensive mechanical properties. The alloy extruded at 320 °C possesses excellent comprehensive mechanical properties and corrosion resistance. Specifically, the yield strength (TYS) amounts to 188.8 MPa; the elongation (EL) reaches 20.2%; and the corrosion rate is 0.12 mm/year. These properties are anticipated to enable its application in the domain of medical biological magnesium alloys.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Staige, M.; Pietak, A.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Hu, J.L.; Yu, Z.M.; Liu, M.; Xiao, X.; Qin, G.W.; Yang, L.; Zhang, E.L. A study on the in vitro and in vivo degradation behaviour and biocompatibility of a Mg-Mn-Zn alloy with PLLA and Micro arc oxidation composite coating. Surf. Coat. Technol. 2023, 471, 129894. [Google Scholar] [CrossRef]
- Niu, J.L.; Xiong, M.P.; Guan, X.M.; Zhang, J.; Huang, H.; Pei, J.; Yuan, G.Y. The in vivo degradation and bone-implant interface of Mg-Nd-Zn-Zr alloy screws: 18 months post-operation results. Corros. Sci. 2016, 113, 183–187. [Google Scholar] [CrossRef]
- Haude, M.; Ince, H.; Abizaid, A.; Toelg, R.; Lemos, P.; Birgelen, C.; Christiansen, E.; Wijns, W.; Neumann, F.; Kaiser, C.; et al. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur. Heart J. 2016, 37, 2701–2709. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.J.; Pei, J.; Zhamh, L.; Lee, B.; Yun, Y.; Zhang, J.; Li, Z.H.; Gu, S.; Park, K.; Yuan, G.Y. Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents. Corros. Sci. 2017, 123, 297–309. [Google Scholar] [CrossRef]
- Yin, M.; Hou, L.F.; Wang, Z.W.; Bao, T.Y.; Liu, B.S.; Wei, H.; Liu, X.D.; Du, H.; Wei, Y.-h. Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy. Corros. Sci. 2021, 184, 109378. [Google Scholar] [CrossRef]
- Feng, B.J.; Shang, X.Q.; Xie, T.; Ying, T.; Zeng, X.Q. Influence of texture on the corrosion behavior of an as-extruded Mg-8Al-0.5In alloy sheet. J. Mater. Res. Technol. 2023, 27, 1497–1508. [Google Scholar] [CrossRef]
- Zomorodlan, A.; Santos, C.; Carmezim, M.; Silva, T.; Fernandes, J.; Montemor, M. “In-vitro” corrosion behaviour of the magnesium alloy with Al and Zn (AZ31) protected with a biodegradable polycaprolactone coating loaded with hydroxyapatite and cephalexin. Electrochim. Acta 2015, 179, 431–440. [Google Scholar] [CrossRef]
- Yang, W.L.; Liu, Z.Q.; Huang, H.L. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water. Corros. Sci. 2021, 188, 109562. [Google Scholar] [CrossRef]
- Xie, J.S.; Zhang, J.H.; You, Z.H.; Liu, S.J.; Guan, K.; Wu, R.Z.; Wang, J.; Feng, J. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. J. Magnes. Alloys 2021, 9, 41–56. [Google Scholar] [CrossRef]
- Bazhenov, V.; Li, A.; Komissarov, A.; Koltygin, A.; Tavolzhanskll, S.; Bautin, V.; Voropaeva, O.; Mukhametshina, A.; Tokar, A. Microstructure and mechanical and corrosion properties of hot-extruded Mg-Zn-Ca-(Mn) biodegradable alloys. J. Magnes. Alloys 2021, 9, 1428–1442. [Google Scholar] [CrossRef]
- Rout, P.; Roy, S.; Rathore, D. Recent advances in the development of Mg-Ca-Zn alloys as biodegradable orthopedic implants. Mater. Today Proc. 2023. [CrossRef]
- Bakhsheshi-rad, H.; Idris, M.; Kadir, M.; Farahans, S. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys. Mater. Des. 2012, 33, 88–97. [Google Scholar] [CrossRef]
- Bakhsheshi-rad, H.; Hamzah, E.; Fereidouni-lotfabadi, A.; Daroonparvar, M.; Yajid, M.; Mezbahul-islam, M.; Kasiri-asgarani, M.; Medraj, M. Microstructure and bio-corrosion behavior of Mg-Zn and Mg-Zn-Ca alloys for biomedical applications. Mater. Corros. 2014, 65, 1178–1187. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R. Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, W. Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion. Corros. Sci. 2014, 82, 392–403. [Google Scholar] [CrossRef]
- Zhao, L.Q.; Wang, C.; Chen, J.C.; Ning, H.; Yang, Z.Z.; Xu, J.; Wang, H.Y. Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization. J. Alloys Compd. 2020, 849, 156640. [Google Scholar] [CrossRef]
- Song, G.L.; Stjohn, D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. J. Light Met. 2002, 2, 1–16. [Google Scholar] [CrossRef]
- Qian, M.; Stjohn, D.; Frost, M. Zirconium alloying and grain refinement of magnesium alloys. In Proceedings of the Magnesium Technology 2003, San Diego, CA, USA, 2–6 March 2003; The Minerals, Metals & Materials Society: Warrendale, PA, USA, 2003. [Google Scholar]
- Cao, P.; Qian, M.; Stjohn, D.; Frost, M. Influence of the Uptake of Iron on the Grain Refinement of Pure Magnesium by Zirconium. In Proceedings of the Light Metals Technology Conference, Brisbane, Australia, 18–20 September 2003. [Google Scholar]
- Yang, L.; Liu, G.K.; Ma, L.G.; Zhou, X.R.; Thompson, G. Effect of iron content on the corrosion of pure magnesium: Critical factor for iron tolerance limit. Corros. Sci. 2018, 139, 421–429. [Google Scholar] [CrossRef]
- Yang, L.; Xu, W.Q.; He, S.Z.; Zhang, E.L.; Zhang, X.X.; Zhang, T.; Qin, G.W. On the effect of trace Si on accelerating the corrosion of Mg-Mn alloys. Corros. Sci. 2022, 201, 110258. [Google Scholar] [CrossRef]
- Thomas, S.; Gharbi, O.; Salleh, S.; Volovitch, P.; Ohle, K.; Birbilis, N. On the effect of Fe concentration on Mg dissolution and activation studied using atomic emission spectroelectrochemistry and scanning electrochemical microscopy. Electrochim. Acta 2016, 210, 271–284. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, X.R.; Liang, S.M.; Schmid-fetzer, R.; Fan, Z.Y.; Scamans, G.; Robson, J.; Thompson, G. Effect of traces of silicon on the formation of Fe-rich particles in pure magnesium and the corrosion susceptibility of magnesium. J. Alloys Compd. 2015, 619, 396–400. [Google Scholar] [CrossRef]
- Ben-hamu, G.; Eliezer, D.; Shin, K.; Cohen, S. The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys. J. Alloys Compd. 2007, 431, 269–276. [Google Scholar] [CrossRef]
- Neil, W.; Forsyth, M.; Howlett, P.; Hutchinson, C.; Hinton, B. Corrosion of magnesium alloy ZE41—The role of microstructural features. Corros. Sci. 2009, 51, 387–394. [Google Scholar] [CrossRef]
- Guo, Y.H.; He, X.C.; Dai, Y.B.; Zang, Q.H.; Dong, X.G.; Zhang, Z.Y. Characterization of hot extrusion deformation behavior, texture evolution, and mechanical properties of Mg-5Li-3Sn-2Al-1Zn magnesium alloy. Mater. Sci. Eng. A 2022, 858, 144136. [Google Scholar] [CrossRef]
- Wang, B.N.; Wang, F.; Wang, Z.; Liu, Z.; Mao, P.L. Fabrication of fine-grained, high strength and toughness Mg alloy by extrusion-shearing process. Trans. Nonferrous Met. Soc. China 2021, 31, 666–678. [Google Scholar] [CrossRef]
- Shiri, M.; Jafari, H.; Singh, R. Effect of extrusion parameters on degradation of magnesium alloys for bioimplant applications: A review. Trans. Nonferrous Met. Soc. China 2022, 32, 2787–2813. [Google Scholar] [CrossRef]
- Lu, L.W.; Liu, T.M.; Chen, J.; Wang, Z.C. Microstructure and corrosion behavior of AZ31 alloys prepared by dual directional extrusion. Mater. Des. 2012, 36, 687–693. [Google Scholar] [CrossRef]
- Li, Z.J.; Gu, X.N.; Lou, S.Q.; Zheng, Y.F. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29, 1329–1344. [Google Scholar] [CrossRef]
- Alvarez-lopez, M.; Pereda, M.; Del Valle, J.; Fernandez-lorenzo, M.; Garcia-Alonso, M.; Ruano, O.; Escudero, M. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 2010, 6, 1763–1771. [Google Scholar] [CrossRef]
- Song, D.; Li, C.; Liang, N.N.; Yang, F.L.; Jiang, J.H.; Sun, J.P.; Wu, G.S.; Ma, A.B.; Ma, X.L. Simultaneously improving corrosion resistance and mechanical properties of a magnesium alloy via equal-channel angular pressing and post water annealing. Mater. Des. 2019, 166, 107621. [Google Scholar] [CrossRef]
- Xu, B.Q.; Sun, J.P.; Han, J.; Yang, Z.Q.; Zhou, H.; Xiao, L.R.; Xu, S.S.; Han, Y.; Ma, A.B.; Wu, G.S. Effect of hierarchical precipitates on corrosion behavior of fine-grain magnesium-gadolinium-silver alloy. Corros. Sci. 2022, 194, 109924. [Google Scholar] [CrossRef]
- Birbilis, N.; Ralston, K.; Virtanen, S.; Fraser, H.; Davies, C. Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng. Sci. Technol. 2010, 45, 224–230. [Google Scholar] [CrossRef]
- Marodkar, A.; Patil, H.; Chavhan, J.; Borkar, H. Effect of gravity die casting, squeeze casting and extrusion on microstructure, mechanical properties and corrosion behaviour of AZ91 magnesium alloy. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Wei, F.; Zhou, S.H.; Wang, J.H.; Shi, B.; Jin, P.P.; Ding, Y.; Guo, X. Effect of extrusion temperature on microstructure, mechanical properties and corrosion resistance of Mg-6Sn-3Al-1Zn alloy. Mater. Today Commun. 2023, 37, 107328. [Google Scholar] [CrossRef]
- Song, D.; Ma, A.B.; Jiang, J.H.; Lin, P.H.; Yang, D.H.; Fan, J.F. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 2010, 52, 481–490. [Google Scholar] [CrossRef]
- Gu, X.N.; Li, N.; Zheng, Y.F.; Kang, F.; Wang, J.T.; Ruan, L.Q. In vitro study on equal channel angular pressing AZ31 magnesium alloy with and without back pressure. Mater. Sci. Eng. B 2011, 176, 1802–1806. [Google Scholar] [CrossRef]
- Li, J.L.; Tan, L.L.; Wan, P.; Yu, X.M.; Yang, K. Study on microstructure and properties of extruded Mg-2Nd-0.2Zn alloy as potential biodegradable implant material. Mater. Sci. Eng. C 2015, 49, 422–429. [Google Scholar] [CrossRef]
- Zhang, X.B.; Yuan, G.Y.; Mao, L.; Niu, J.L.; Fu, P.H.; Ding, W.J. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy. J. Mech. Behav. Biomed. Mater. 2012, 7, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Kang, J.; Kim, J.; Kim, B.; Shin, H.; Park, S. Improved corrosion resistance of Mg-8Sn-1Zn-1Al alloy subjected to low-temperature indirect extrusion. Corros. Sci. 2018, 141, 203–210. [Google Scholar] [CrossRef]
- Ben-haroush, M.; Ben-hamu, G.; Eliezer, D.; Eliezer, D.; Wagner, L. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures. Corros. Sci. 2008, 50, 1766–1778. [Google Scholar] [CrossRef]
- Miao, J.; Ye, B.; Wang, Q.D.; Peng, T. Mechanical properties and corrosion resistance of Mg-10Gd-2Y-0.5Zr alloy by hot extrusion solid-state recycling. J. Alloys Compd. 2013, 561, 184–192. [Google Scholar] [CrossRef]
- Mohammadi, F.; Jafari, H. Microstructure characterization and effect of extrusion temperature on biodegradation behavior of Mg-5Zn-1Y-xCa alloy. Trans. Nonferrous Met. Soc. China 2018, 28, 2199–2213. [Google Scholar] [CrossRef]
- Liu, G.L. The electronic structure of the microstructure of Mg-Zr alloys. Acta Phys. Sin. 2008, 57, 1043–1047. [Google Scholar] [CrossRef]
- Prasad, A.; Uggowitzer, P.; Shi, Z.M.; Atrens, A. Production of High Purity Magnesium Alloys by Melt Purification with Zr. Adv. Eng. Mater. 2012, 14, 477–490. [Google Scholar] [CrossRef]
- Qian, M. Heterogeneous nucleation on potent spherical substrates during solidification. Acta Mater. 2007, 55, 943–953. [Google Scholar] [CrossRef]
- Qian, M.; Zheng, L.; Graham, D.; Frost, M.; Stjohn, D. Settling of undissolved zirconium particles in pure magnesium melts. J. Light Met. 2001, 1, 157–165. [Google Scholar] [CrossRef]
- Qian, M.; Stjohn, D.; Frost, M. Characteristic zirconium-rich coring structures in Mg-Zr alloys. Scr. Mater. 2002, 46, 649–656. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.X.; Zhang, C.Y.; Zhang, B.; Zhang, T.; Yang, L.; Wu, K.M.; Wang, F.H. Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys. J. Alloys Compd. 2019, 782, 648–658. [Google Scholar] [CrossRef]
- Coy, A.; Viejo, F.; Skeldon, P.; Thompson, G. Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion. Corros. Sci. 2010, 52, 3896–3906. [Google Scholar] [CrossRef]
- Abdelgawad, M.; Usman, C.; Shunmugasamy, V.; Karaman, I.; Mansoor, B. Corrosion behavior of Mg-Zn-Zr-RE alloys under physiological environment-Impact on mechanical integrity and biocompatibility. J. Magnes. Alloys 2022, 10, 1542–1572. [Google Scholar] [CrossRef]
- Cao, F.Y.; Shi, Z.M.; Song, G.L.; Liu, M.; Atrens, A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corros. Sci. 2013, 76, 60–97. [Google Scholar] [CrossRef]
- Gandel, D.; Easton, M.; Gibson, M.; Annott, T.; Birbilis, N. The influence of zirconium additions on the corrosion of magnesium. Corros. Sci. 2014, 81, 27–35. [Google Scholar] [CrossRef]
- Gandel, D.; Easton, M.; Gibson, M.; Birbilis, N. Influence of Mn and Zr on the Corrosion of Al-Free Mg Alloys: Part 2-Impact of Mn and Zr on Mg Alloy Electrochemistry and Corrosion. Corros. Sci. 2013, 69, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.J.; Li, Q.; Zhao, T.L.; Pan, F.S. A quasi-passivated film formed on as-solutionized Mg-Sm-Zn-Zr alloy in NaCl solution. Corros. Sci. 2022, 198, 110136. [Google Scholar] [CrossRef]
- Gao, J.H.; Guan, S.; Ren, Z.; Sun, Y.; Wang, B. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid. Mater. Lett. 2011, 65, 691–693. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, S.J.; Wang, L.G.; Liu, Q.; Yue, G.C.; Wang, J.; Guan, S.K. The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application. J. Mech. Behav. Biomed. Mater. 2012, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Duley, P.; Bairagi, D.; Bairi, L.; Bandyopadhyay, T.; Mandal, S. Effect of microstructural evolution and texture change on the in-vitro bio-corrosion behaviour of hard-plate hot forged Mg-4Zn-0.5Ca-0.16Mn(wt%) alloy. Corros. Sci. 2021, 192, 109860. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Li, Y.; Luo, D.M.; Ding, Y.; Peter, H. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg-Mn-Zn-Nd alloys for biomedical applications. Mater. Sci. Eng. C 2015, 49, 93–100. [Google Scholar] [CrossRef]
- Zeng, R.; Kainer, K.U.; Blawert, C.; Dietzel, W. Corrosion of an extruded magnesium alloy ZK60 component-The role of microstructural features. J. Alloy. Compd. 2011, 509, 4462–4469. [Google Scholar] [CrossRef]
- Kavyani, M.; Ebrahimi, G.R.; Ezatpour, H.R.; Jahazi, M. Microstructure refinement, mechanical and biocorrosion properties of Mg-Zn-Ca-Mn alloy improved by a new severe plastic deformation process. J. Magnes. Alloys 2022, 10, 1640–1662. [Google Scholar] [CrossRef]
Sample | Zn | Ca | Zr | Fe | Ni | Si | Mg |
---|---|---|---|---|---|---|---|
Mg–0.5Zn–0.3Ca–0.05Zr | 0.461 | 0.272 | 0.034 | 0.0029 | 0.00021 | <0.00001 | Balance |
Alloys | Precipitates | O | Mg | Zn | Ca | Zr | Fe | Al | Si |
---|---|---|---|---|---|---|---|---|---|
HT-ZXK | Point1 | 5.12 | 81.51 | 0.97 | 0.08 | 11.44 | 0.25 | 0.10 | 0.53 |
Point2 | 6.50 | 77.98 | 1.06 | 0.22 | 13.95 | 0.19 | - | 0.21 | |
320-E | Point1 | 6.29 | 74.71 | 1.17 | 0.28 | 15.03 | 0.37 | 1.68 | 0.46 |
Point2 | 5.72 | 90.64 | 0.77 | 0.24 | 2.44 | - | - | 0.62 | |
Point3 | 11.39 | 66.67 | 1.05 | 0.38 | 17.26 | 0.63 | 1.97 | 0.65 | |
Point4 | 10.35 | 78.44 | 1.16 | 0.29 | 9.50 | 0.17 | 0.08 | ||
Point5 | 5.51 | 75.78 | 0.64 | 0.50 | 15.35 | 0.32 | 0.48 | 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Hu, W.; Chen, Z.; Shi, L.; Yang, L.; Jin, J.; Zhang, E. Effect of Extrusion Process on Microstructure, Corrosion Properties, and Mechanical Properties of Micro-Alloyed Mg–Zn–Ca–Zr Alloy. Materials 2024, 17, 4263. https://doi.org/10.3390/ma17174263
Yu Z, Hu W, Chen Z, Shi L, Yang L, Jin J, Zhang E. Effect of Extrusion Process on Microstructure, Corrosion Properties, and Mechanical Properties of Micro-Alloyed Mg–Zn–Ca–Zr Alloy. Materials. 2024; 17(17):4263. https://doi.org/10.3390/ma17174263
Chicago/Turabian StyleYu, Zemin, Wenxin Hu, Zhiqiang Chen, Lei Shi, Lei Yang, Jianfeng Jin, and Erlin Zhang. 2024. "Effect of Extrusion Process on Microstructure, Corrosion Properties, and Mechanical Properties of Micro-Alloyed Mg–Zn–Ca–Zr Alloy" Materials 17, no. 17: 4263. https://doi.org/10.3390/ma17174263
APA StyleYu, Z., Hu, W., Chen, Z., Shi, L., Yang, L., Jin, J., & Zhang, E. (2024). Effect of Extrusion Process on Microstructure, Corrosion Properties, and Mechanical Properties of Micro-Alloyed Mg–Zn–Ca–Zr Alloy. Materials, 17(17), 4263. https://doi.org/10.3390/ma17174263