Assessing the Impact of Drought Stress on Hemp (Cannabis sativa L.) Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Schedule
- A laboratory breaking machine (Czech Flax Machinery), suitable for hemp straw due to its stalk thickness;
- Laboratory turbine (Czech Flax Machinery).
2.2. Fiber Evaluation—Metrological Analysis
2.2.1. Linear Density
2.2.2. Tenacity
2.3. Fiber Evaluation—Chemical Analysis
2.3.1. Wax and Fat Content
2.3.2. Cellulose Content
2.3.3. Hemicellulose Content
2.3.4. Pectin Content
2.3.5. Lignin Content
2.4. FTIR-ATR Analysis
2.5. TGA-FTIR Analysis
2.6. WAXD for Evaluation of Crystalline Structure
2.7. The Statistical Analysis
3. Results and Discussion
3.1. Mechanical Properties
3.2. Chemical Analysis
3.2.1. Wax and Fat Content
3.2.2. Cellulose Content
3.2.3. Hemicellulose Content
3.2.4. Pectin Content
3.2.5. Lignin Content
3.3. FTIR-ATR Analysis
3.4. TGA-FTIR Analysis
- Water vapor:
- ○
- OH bond stretching bands: 3740–3733 cm−1 and 1507 cm−1.
- Carbon dioxide:
- ○
- CO bond stretching bands: 2362–2361 cm−1 and 673–670 cm−1.
- Carbon monoxide:
- ○
- CO bond band: 2195–2183 cm−1.
- Acetic acid and formic acid:
- ○
- OH bond stretching vibrations: 3571–3567 cm−1;
- ○
- C=O bond stretching vibrations (carbonyl group): 1773–1745 cm−1;
- ○
- C-O bond stretching vibrations (acids): 1180–1077 cm−1;
- ○
- -CH3 bond stretching vibrations:2983–2976 cm−1.
- Formaldehyde:
- ○
- CH bond vibration bands (aldehyde group): 2834–2724 cm−1;
- ○
- CH2 vibration bands: 2934–2904 cm−1;
- ○
- C=O bond vibration (carbonyl group): 1773–1745 cm−1.
- Water vapor, stretching OH bond visible at 3737–3736 cm−1;
- Carbon dioxide, stretching CO bond visible at 2362–2361 cm−1 and at 673–670 cm−1;
- Carbon monoxide, stretching CO bond visible at 2188–2182 cm−1;
- Formaldehyde, stretching CH bond at 2931–2928 cm−1 and C=O bond at 1755–1752 cm−1;
- Methane, for which CH4 bond stretching vibration bands: 3022–3020 cm−1.
3.5. Evaluation of the Crystalline Structure by WAXD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strzelczyk, M.; Kaniewski, R. Konopie siewne Cannabis sativa L.—Jeden z najstarszych gatunków roślin użytkowych. Postępy Fitoter. 2021, 1, 53–60. [Google Scholar] [CrossRef]
- Common Catalogue of Varieties of Agricultural Plant Species—Version of 27 January 2023. Available online: https://food.ec.europa.eu/plants/plant-reproductive-material/plant-variety-catalogues-databases-information-systems_en (accessed on 19 September 2023).
- Zimniewska, M. Hemp Fibre Properties and Processing Target Textile: A Review. Materials 2022, 15, 1901. [Google Scholar] [CrossRef] [PubMed]
- Zimniewska, M.; Pawlaczyk, M.; Romanowska, B.; Gryszczyńska, A.; Kwiatkowska, E.; Przybylska, P. Bioactive Hemp Clothing Modified with Cannabidiol (CBD) Cannabis sativa L. Extract. Materials 2021, 14, 6031. [Google Scholar] [CrossRef]
- FAOSTAT—Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 19 September 2023).
- Caplan, D.; Dixon, M.; Zheng, Y. Increasing Inflorescence Dry Weight and Cannabinoid Content in Medical Cannabis Using Controlled Drought Stress. HortScience 2019, 54, 964–969. [Google Scholar] [CrossRef]
- PN-EN ISO 1973:2011; Textile Fibres—Determination of Linear Density—Gravimetric Method and Vibroscope Method (ISO 1973:1995). ISO: Geneva, Switzerland, 2011.
- PN-P-04676:1986; Bast Fibers—Determination of Indices at Static Tension. Polish Committee for Standardization: Warszawa, Poland, 1986.
- BN-86/7501-10; Textile—Methods of Testing Textile Raw Materials—Flax and Hemp Fibers—Determination of Wax and Fat Content. Polish Committee for Standardization “ALFA”: Warsaw, Poland, 1986.
- PN-92/50092; Determination of Cellulose Content. Raw Materials for the Paper Industry. Wood. Chemical Analysis. Polish Committee for Standardization “ALFA”: Warsaw, Poland, 1992.
- BN-77/7529-02; Textile Raw Materials—Methods of Testing Textile Raw Materials and Products. Flax and Hemp Fibers, Semi-finished and Finished Products. Determination of Hemicellulose Content. Polish Committee for Standardization: Warsaw, Poland, 1978.
- BN-86/7501-11; Textiles—Test Methods for Textile Raw Materials—Flax and Hemp Fibers—Determination of Lignin Content. Polish Committee for Standardization “ALFA”: Warsaw, Poland, 1986.
- Rabiej, M.; Rabiej, S. The role of an objective function in the mathematical modelling of wide-angle X-ray diffraction curves of semi-crystalline polymers. ActaCryst 2021, 77, 534–547. [Google Scholar] [CrossRef]
- Kwiatkowska, E.; Zimniewska, M.; Przybylska, P.; Romanowska, B. Effect of Drought Stress on Quality of Flax Fibres. Materials 2023, 16, 3752. [Google Scholar] [CrossRef]
- Jackowski, T.; Chylewska, B. Przędzalnictwo, Budowa i Technologia Przędz; Wydawnictwo Politechniki Łódzkiej: Łódź, Poland, 1999; ISBN 83-87198-56-0. [Google Scholar]
- Sadrmanesh, V.; Chen, Y. Bast fibres: Structure, processing, properties, and applications. Int. Mater. Rev. 2019, 64, 381–406. [Google Scholar] [CrossRef]
- Komuraiah, A.; Kumar, N.S.; Prasad, B.D. Chemical composition of natural fibers and its influence on their mechanical properties. Mech. Compos. Mater. 2014, 50, 359–376. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005, 23, 22–27. [Google Scholar] [CrossRef]
- De Prez, J.; Van Vuure, A.W.; Ivens, J.; Aerts, G.; Van de Voorde, I. Enzymatic treatment of flax for use in composites. Biotechnol. Rep. 2018, 20, e00294. [Google Scholar] [CrossRef] [PubMed]
- Thompson, N.S. Hemicellulose as a biomass resource. In Wood and Agricultural Residues; Soles, E., Ed.; Academic Press: Cambridge, MA, USA, 1983; pp. 101–119. [Google Scholar]
- Różańska, W. Innowacyjna Metoda Osmotycznego Pozyskiwania Włókien Łykowych Przeznaczonych do Produkcji Kompozytów. Ph.D. Thesis, Lodz University of Technilogy, Łódź, Poland, 2020. [Google Scholar]
- Konczewicz, W.; Zimniewska, M.; Valera, M.A. The selection of a retting method for extraction of bast fibers as response to challenges in composite reinforcement. Text. Res. J. 2017, 88, 2104–2119. [Google Scholar] [CrossRef]
- Kwiatkowska, E.; Zimniewska, M.; Gryszczyńska, A.; Przybylska, P.; Różańska, W. The Effect of Drought on the Content of Active Substances of Flax Fibers. J. Nat. Fibers 2024, 21, 2310679. [Google Scholar] [CrossRef]
- Lv, P.; Almeida, G.; Perre, P. TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations. BioResources 2015, 10, 4239–4251. [Google Scholar] [CrossRef]
- Benıtez-Guerrero, M.; Lopez-Beceiro, J.; Sanchez-Jimenez, P.E.; Pascual-Cosp, J. Comparison of thermal behavior of natural and hot-washed sisal fibres based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochim. Acta 2014, 581, 70–86. [Google Scholar] [CrossRef]
- Dong, Z.; Ding, R.Y.; Zheng, L.; Zhang, G.X.; Yu, C.W. Thermal properties of flax fiber scoured by different methods. Therm. Sci. 2014, 19, 939–945. [Google Scholar] [CrossRef]
- Poletto, M.; Ornaghi, L., Jr.; Zattera, S.J. Native cellulose: Structure, characterization and thermal properties. Materials 2014, 7, 6105–6119. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, S.; Kim, H.J.; Yang, H.S. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim. Acta 2006, 451, 181–188. [Google Scholar] [CrossRef]
- Różańska, W.; Romanowska, B.; Rojewski, S. The Quantity and Quality of Flax and Hemp Fibers Obtained Using the Osmotic, Water-, and Dew-Retting Processes. Materials 2023, 16, 7436. [Google Scholar] [CrossRef]
- Urbańczyk, G.W. Chapter 9: Natural cellulose fibres—Bast Fibres. In The Science of a Fibre; Nauka o Włóknie: Lodz, Poland, 1977; pp. 60–64. [Google Scholar]
- Borysiak, S.; Doczekalska, B. X-ray diffraction study of pine wood treated with NaOH. Fibres Text. East. Eur. 2005, 13, 87–89. [Google Scholar]
- French, A.D.; Cintron, M.S. Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 2013, 20, 583–588. [Google Scholar] [CrossRef]
- Hindeleh, A.M.; Johnson, D.J. Crystallinity and crystallite size measurement in cellulose fibres: 2. Viscose rayon. Polymer 1974, 15, 697–705. [Google Scholar] [CrossRef]
- Hindeleh, A.M. X-ray Characterization of Viscose Rayon and the Significance of Crystallinity on Tensile Properties. Text. Res. J. 1980, 50, 581–589. [Google Scholar] [CrossRef]
- Masqsood, H.S.; Bashir, U.; Wiener, J.; Puchalski, M.; Sztajnowski, S.; Militky, J. Ozone treatment of jute fibers. Cellulose 2017, 24, 1543–1553. [Google Scholar] [CrossRef]
- Perepelkin, K.E. Intermolecular interactions in fiber-forming linear polymers and certain of their mechanical properties. Polym. Mech. 1971, 7, 707–712. [Google Scholar] [CrossRef]
- Perepelkin, K.E. Structure and structural mechanics of polymer fibres: Current concepts. Fibre Chem. 2009, 41, 9–21. [Google Scholar] [CrossRef]
Symbol | Variety of Hemp | The Level of Drought Stress |
---|---|---|
H25 | Bialobrzeskie Hemp | 25% field water capacity of the soil |
H35 | 35% field water capacity of the soil | |
H45 | 45% field water capacity of the soil |
Range of Wavenumbers | Type of Vibration | Functional Group | Occurrence |
---|---|---|---|
3336 cm−1 | stretching | OH | cellulose, hemicellulose, lignin, pectin |
3282 cm−1 | |||
2917 cm−1 | stretching | CH, CH2 | cellulose, hemicellulose, lignin, pectin, wax, and fat |
2849 cm−1 | |||
1732 cm−1 | stretching | C=O | lignin, pectin, wax, and fat |
1629 cm−1 | stretching | OH | adsorbed water |
1423 cm−1 | stretching | C=C | lignin |
1315 cm−1 | scissoring (bending) | CH2 | cellulose, hemicellulose |
1241 cm−1 | deforming | OH | cellulose, hemicellulose |
1023 cm−1–1051 cm−1 | bending | COC | cellulose, hemicellulose, pectin |
888 cm−1 | stretching | β-glycosidic linkage | cellulose, hemicellulose, pectin |
Fibers | Decomposition Temperature [°C] | Residual Mass at T700 °C | ||||||
---|---|---|---|---|---|---|---|---|
DTG | T10%. | T60%. | ||||||
°C | SD | °C | SD | % | SD | % | SD | |
2019 | ||||||||
H25 | 364.10 | 0.12 | 290.69 | 13.92 | 367.36 | 0.64 | 14.91 | 0.24 |
H35 | 363.20 | 0.14 | 289.70 | 5.86 | 366.44 | 0.17 | 14.94 | 0.16 |
H45 | 362.91 | 0.45 | 291.51 | 3.15 | 366.15 | 0.40 | 15.04 | 0.19 |
2020 | ||||||||
H25 | 363.85 | 0.16 | 284.06 | 10.15 | 367.04 | 0.45 | 15.22 | 0.26 |
H35 | 364.77 | 0.29 | 284.23 | 14.08 | 367.94 | 0.84 | 14.85 | 0.57 |
H45 | 364.28 | 0.42 | 294.87 | 10.90 | 368.15 | 0.50 | 15.22 | 0.62 |
2021 | ||||||||
H25 | 363.99 | 0.12 | 282.00 | 11.85 | 367.51 | 0.48 | 14.86 | 0.96 |
H35 | 364.87 | 0.19 | 295.81 | 12.89 | 368.69 | 0.66 | 15.58 | 0.36 |
H45 | 364.77 | 0.09 | 291.92 | 11.37 | 368.97 | 0.34 | 16.11 | 0.27 |
Year of Experiment | Temperature | Range of Wavenumbers | Type of Vibration | Functional Group |
---|---|---|---|---|
2019–2021 | 100 °C | 3747–3736 cm−1 | stretching | OH |
1511–1509 cm−1 | stretching | OH | ||
300 °C | 3740–3567 cm−1 | stretching | OH | |
2983–2732 cm−1 | stretching | CH3, CH2, CH | ||
2362–2361 cm−1 | stretching | CO2 | ||
2195–2183 cm−1 | stretching | CO | ||
1773–1769 cm−1 | stretching | C=O | ||
1379–1376 cm−1 | deforming | CH3 | ||
1180–1077 cm−1 | stretching | C-O | ||
673–673 cm−1 | stretching | CO2 | ||
365 °C | 3740–3566 cm−1 | stretching | OH | |
2982–2731 cm−1 | stretching | CH3, CH2, CH | ||
2364–2362 cm−1 | stretching | CO2 | ||
2189–2184 cm−1 | stretching | CO | ||
1749–1745 cm−1 | stretching | C=O | ||
1384–1377 cm−1 | deforming | CH3 | ||
1085–1084 cm−1 | stretching | C-O | ||
673–670 cm−1 | stretching | CO2 | ||
450 °C | 3737–3569 cm−1 | stretching | OH | |
3022–2928 cm−1 | stretching | CH4, CH | ||
2362–2361 cm−1 | stretching | CO2 | ||
2188–2182 cm−1 | stretching | CO | ||
1755–1751 cm−1 | stretching | C=O | ||
1112–1053 cm−1 | stretching | C-O | ||
673–670 cm−1 | stretching | CO2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowska, E.; Zimniewska, M.; Różańska, W.; Puchalski, M.; Przybylska, P. Assessing the Impact of Drought Stress on Hemp (Cannabis sativa L.) Fibers. Materials 2024, 17, 4198. https://doi.org/10.3390/ma17174198
Kwiatkowska E, Zimniewska M, Różańska W, Puchalski M, Przybylska P. Assessing the Impact of Drought Stress on Hemp (Cannabis sativa L.) Fibers. Materials. 2024; 17(17):4198. https://doi.org/10.3390/ma17174198
Chicago/Turabian StyleKwiatkowska, Edyta, Małgorzata Zimniewska, Wanda Różańska, Michał Puchalski, and Patrycja Przybylska. 2024. "Assessing the Impact of Drought Stress on Hemp (Cannabis sativa L.) Fibers" Materials 17, no. 17: 4198. https://doi.org/10.3390/ma17174198
APA StyleKwiatkowska, E., Zimniewska, M., Różańska, W., Puchalski, M., & Przybylska, P. (2024). Assessing the Impact of Drought Stress on Hemp (Cannabis sativa L.) Fibers. Materials, 17(17), 4198. https://doi.org/10.3390/ma17174198