Terahertz Transmission through a Gold Mirror or Electrode
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- James Webb Space Telescope. Available online: https://webb.nasa.gov/content/observatory/ote/mirrors/index.html (accessed on 5 August 2024).
- Choubey, A.; Singh, A.; Modi, M.H.; Upadhyaya, B.N.; Lodha, G.S.; Oak, S.M. Study on effective cleaning of gold layer from fused silica mirrors using nanosecond-Pulsed Nd:YAG laser. Appl. Opt. 2013, 52, 7540–7548. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. Enhanced light-matter interaction of a MoS2 monolayer with a gold mirror layer. RSC Adv. 2017, 7, 23109–23113. [Google Scholar] [CrossRef]
- Wang, C.; Liu, W.; Niu, Y.; Sha, W.; Luo, Z. Using the Reflection Ellipsometry to Detect the Stress for the Gold Coating Reflection Mirrors. Microgravity Sci. Technol. 2022, 34, 1–6. [Google Scholar] [CrossRef]
- Wittkämper, F.; Scholtes, T.; Linzen, S.; Ziegler, M.; Stolz, R. Integration of Passivated Gold Mirrors into Microfabricated Alkali Vapor Cells. Coatings 2023, 13, 1733. [Google Scholar] [CrossRef]
- Shimada, K.; Toyoda, T. Gold leaf counter electrodes for dye-sensitized solar cells. Jpn. J. Appl. Phys. 2018, 57, 03EJ04. [Google Scholar] [CrossRef]
- Pydzińska-Białek, K.; Nowaczyk, G.; Ziółek, M. Complete Perovskite Solar Cells with Gold Electrodes Studied in the Visible and Near-Infrared Ranges. Chem. Mater. 2022, 34, 6355–6366. [Google Scholar] [CrossRef]
- Song, L.; Niedermeier, M.A.; Körstgens, V.; Löhrer, F.C.; Chen, Y.; Roth, S.V.; Müller-Buschbaum, P. In Situ Study of Sputtering Nanometer-Thick Gold Films onto 100-nm-Thick Spiro-OMeTAD Films: Implications for Perovskite Solar Cells. ACS Appl. Nano Mater. 2020, 3, 5987–5994. [Google Scholar] [CrossRef]
- Libansky, M.; Zima, J.; Barek, J.; Reznickova, A.; Svorcik, V.; Dejmkova, H. Basic electrochemical properties of sputtered gold film electrodes. Electrochim. Acta 2017, 251, 452–460. [Google Scholar] [CrossRef]
- Hua, X.; Xia, H.-L.; Long, Y.-T. Revisiting a classical redox process on a gold electrode by operando ToF-SIMS: Where does the gold go? Chem. Sci. 2019, 10, 6215–6219. [Google Scholar] [CrossRef]
- Shan, Z.; Jansen, C.U.; Yesibolati, M.N.; Yan, X.; Qvortrup, K.; Ulstrup, J.; Xiao, X. The effect of number of layers of nanoporous gold films on their electrochemical behaviour. Electrochim. Acta 2024, 489, 144233. [Google Scholar] [CrossRef]
- González-Martínez, E.; Saem, S., (Kevin); Beganovic, N.E.; Moran-Mirabal, J.M. Electrochemical Nano-Roughening of Gold Microstructured Electrodes for Enhanced Sensing in Biofluids. Angew. Chemie Int. Ed. 2023, 62, e202218080. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Tan, C.; Siddiqui, S.; Arumugam, P.U. Electrochemical behavior of a gold nanoring electrode microfabricated on a silicon micropillar. Sens. Actuators B Chem. 2019, 281, 392–398. [Google Scholar] [CrossRef]
- Naftaly, M.; Das, S.; Gallop, J.; Pan, K.; Alkhalil, F.; Kariyapperuma, D.; Constant, S.; Ramsdale, C.; Hao, L. Sheet resistance measurements of conductive thin films: A comparison of techniques. Electronics 2021, 10, 960. [Google Scholar] [CrossRef]
- Ulatowski, A.M.; Herz, L.M.; Johnston, M.B. Terahertz Conductivity Analysis for Highly Doped Thin-Film Semiconductors. J. Infrared Millim. Terahertz Waves 2020, 41, 1431–1449. [Google Scholar] [CrossRef]
- Ma, W.; Li, C.; Wang, Z.; Li, L.; Wang, S.; Sun, C. Application of terahertz time-domain spectroscopy in characterizing thin metal film-substrate structures. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 593–598. [Google Scholar] [CrossRef]
- Koral, C.; Papari, G.; Andreone, A. THz Spectroscopy of Advanced Materials. In Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN; Pereira, M.F., Apostolakis, A., Eds.; Springer: Dordrecht, The Netherlands, 2021; pp. 253–273. [Google Scholar]
- Koral, C.; Mazaheri, Z.; Papari, G.P.; Andreone, A.; Drebot, I.; Giove, D.; Masullo, M.R.; Mettivier, G.; Opromolla, M.; Paparo, D.; et al. Multi-Pass Free Electron Laser Assisted Spectral and Imaging Applications in the Terahertz/Far-IR Range Using the Future Superconducting Electron Source BriXSinO. Front. Phys. 2022, 10, 725901. [Google Scholar] [CrossRef]
- Novelli, F. Terahertz spectroscopy of thick and diluted water solutions. Opt. Express 2024, 32, 11041. [Google Scholar] [CrossRef] [PubMed]
- Laman, N.; Grischkowsky, D. Terahertz conductivity of thin metal films. Appl. Phys. Lett. 2008, 93, 051105. [Google Scholar] [CrossRef]
- Yasuda, H.; Hosako, I. Measurement of Terahertz Refractive Index of Metal with Terahertz Time-Domain Spectroscopy. Jpn. J. Appl. Phys. 2008, 47, 1632. [Google Scholar] [CrossRef]
- Razanoelina, M.; Kinjo, R.; Takayama, K.; Kawayama, I.; Murakami, H.; Mittleman, D.M.; Tonouchi, M. Parallel-Plate Waveguide Terahertz Time Domain Spectroscopy for Ultrathin Conductive Films. J. Infrared Millim. Terahertz Waves 2015, 36, 1182–1194. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Fleischer, S.; Brandt, N.C.; Perkins, B.G.; Liu, M.; Fan, K.; Sternbach, A.; Zhang, X.; Averitt, R.D.; Nelson, K.A. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J. Mod. Opt. 2015, 62, 1447–1479. [Google Scholar] [CrossRef]
- Takeda, J.; Yoshioka, K.; Minami, Y.; Katayama, I. Nanoscale electron manipulation in metals with intense THz electric fields. J. Phys. D. Appl. Phys. 2018, 51, 103001. [Google Scholar] [CrossRef]
- Unikandanunni, V.; Rigoni, F.; Hoffmann, M.C.; Vavassori, P.; Urazhdin, S.; Bonetti, S. Ultrafast electron dynamics in platinum and gold thin films driven by optical and terahertz fields. Appl. Phys. Lett. 2022, 120, 021601. [Google Scholar] [CrossRef]
- Alberding, B.G.; Kushto, G.P.; Lane, P.A.; Heilweil, E.J. Reduced photoconductivity observed by time-resolved terahertz spectroscopy in metal nanofilms with and without adhesion layers. Appl. Phys. Lett. 2016, 108, 223104. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhang, B.; Ma, J.; Li, Y.; Miao, J.; Wu, X. Nonlinear terahertz effects of gold nanofilms. Terahertz Sci. Technol. 2021, 14, 20–30. [Google Scholar] [CrossRef]
- Kadlec, F.; Kužel, P.; Coutaz, J.-L. Study of terahertz radiation generated by optical rectification on thin gold films. Opt. Lett. 2005, 30, 1402. [Google Scholar] [CrossRef] [PubMed]
- Novelli, F.; Fausti, D.; Giusti, F.; Parmigiani, F.; Hoffmann, M. Mixed regime of light-matter interaction revealed by phase sensitive measurements of the dynamical Franz-Keldysh effect. Sci. Rep. 2013, 3, 1227. [Google Scholar] [CrossRef] [PubMed]
- Novelli, F.; Ostovar Pour, S.; Tollerud, J.; Roozbeh, A.; Appadoo, D.R.T.; Blanch, E.W.; Davis, J.A. Time-Domain THz Spectroscopy Reveals Coupled Protein–Hydration Dielectric Response in Solutions of Native and Fibrils of Human Lysozyme. J. Phys. Chem. B 2017, 121, 4810–4816. [Google Scholar] [CrossRef]
- Naftaly, M.; Miles, R.E. Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties. J. Appl. Phys. 2007, 102, 043517. [Google Scholar] [CrossRef]
- Naftaly, M.; Miles, R.E. Terahertz Time-Domain Spectroscopy for Material Characterization. Proc. IEEE 2007, 95, 1658–1665. [Google Scholar] [CrossRef]
- Tostanoski, N.J.; Sundaram, S.K. Universal power-law of terahertz optical properties of borosilicate, tellurite, and chalcogenide glass families. Sci. Rep. 2023, 13, 2260. [Google Scholar] [CrossRef] [PubMed]
- Kröll, J.; Darmo, J.; Unterrainer, K. Time and frequency resolved THz spectroscopy of micro-and nano-systems. Acta Phys. Pol. A 2005, 107, 92–98. [Google Scholar] [CrossRef]
- Lovrinčić, R.; Pucci, A. Infrared optical properties of chromium nanoscale films with a phase transition. Phys. Rev. B 2009, 80, 205404. [Google Scholar] [CrossRef]
- Ganichev, S.D.; Danilov, S.N.; Kronseder, M.; Schuh, D.; Gronwald, I.; Bougeard, D.; Ivchenko, E.L.; Shul’man, A.Y. Observation of Anomalously Strong Penetration of Terahertz Electric Field Through Terahertz-Opaque Gold Films Into a GaAs/AlGaAs Quantum Well. J. Infrared Millim. Terahertz Waves 2020, 41, 957–978. [Google Scholar] [CrossRef]
- Minami, Y.; Takeda, J.; Dao, T.D.; Nagao, T.; Kitajima, M.; Katayama, I. Nonlinear electron dynamics of gold ultrathin films induced by intense terahertz waves. Appl. Phys. Lett. 2014, 105, 241107. [Google Scholar] [CrossRef]
- Chen, Z.; Curry, C.B.; Zhang, R.; Treffert, F.; Stojanovic, N.; Toleikis, S.; Pan, R.; Gauthier, M.; Zapolnova, E.; Seipp, L.E.; et al. Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids. Nat. Commun. 2021, 12, 1638. [Google Scholar] [CrossRef] [PubMed]
- Walther, M.; Cooke, D.G.; Sherstan, C.; Hajar, M.; Freeman, M.R.; Hegmann, F.A. Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys. Rev. B 2007, 76, 125408. [Google Scholar] [CrossRef]
- Thoman, A.; Kern, A.; Helm, H.; Walther, M. Nanostructured gold films as broadband terahertz antireflection coatings. Phys. Rev. B 2008, 77, 195405. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, D.; Jeong, J.; Kim, J.; Shmid, V.; Korotchenkov, O.; Vasa, P.; Bahk, Y.M.; Kim, D.S. Enhanced terahertz conductivity in ultra-thin gold film deposited onto (3-mercaptopropyl) trimethoxysilane (MPTMS)-coated Si substrates. Sci. Rep. 2019, 9, 5–11. [Google Scholar] [CrossRef]
- Grosso, G.; Parravicini, G.P. Solid State Physics; Academic Press: London, UK, 2003; ISBN 012304460X. [Google Scholar]
- Hecht, E. Optics, 5th ed.; Pearson: Bloomington, MN, USA, 2017; ISBN 978-1-292-09693-3. [Google Scholar]
- Johnson, P.B.; Christy, R.W. Optical Constant of the Nobel Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Ordal, M.A.; Bell, R.J.; Alexander, R.W.; Long, L.L.; Querry, M.R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 1985, 24, 4493. [Google Scholar] [CrossRef] [PubMed]
- Ordal, M.A.; Long, L.L.; Bell, R.J.; Bell, S.E.; Bell, R.R.; Alexander, R.W.; Ward, C.A. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 1983, 22, 1099. [Google Scholar] [CrossRef] [PubMed]
- Gatesman, A.J.; Giles, R.H.; Waldman, J. High-precision reflectometer for submillimeter wavelengths. J. Opt. Soc. Am. B 1995, 12, 212. [Google Scholar] [CrossRef]
- Olmon, R.L.; Slovick, B.; Johnson, T.W.; Shelton, D.; Oh, S.-H.; Boreman, G.D.; Raschke, M.B. Optical dielectric function of gold. Phys. Rev. B 2012, 86, 235147. [Google Scholar] [CrossRef]
- Ordal, M.A.; Bell, R.J.; Alexander, R.W.; Long, L.L.; Querry, M.R. Optical properties of Au, Ni, and Pb at submillimeter wavelengths. Appl. Opt. 1987, 26, 744. [Google Scholar] [CrossRef] [PubMed]
- Prokhorov, A.S.; Anzin, V.B.; Vitukhnovskiǐ, D.A.; Zhukova, E.S.; Spektor, I.E.; Gorshunov, B.P.; Vongtragool, S.; Hesselberth, M.B.S.; Aarts, J.; Nieuwenhuys, G.J.; et al. Terahertz spectroscopy of AuFe spin glasses. J. Exp. Theor. Phys. 2006, 103, 887–896. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 95th ed.; Haynes, W.M., Ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9780429170195. [Google Scholar]
- Brandt, T.; Hövel, M.; Gompf, B.; Dressel, M. Temperature- and frequency-dependent optical properties of ultrathin Au films. Phys. Rev. B 2008, 78, 205409. [Google Scholar] [CrossRef]
- Cignoni, P.; Blanc, N.; Tschulik, K. Why standard electrokinetic analysis often fails for nanostructured electrodes—Reviewing inhomogeneous electroactivity. Curr. Opin. Electrochem. 2023, 38, 101225. [Google Scholar] [CrossRef]
- Banko, L.; Krysiak, O.A.; Pedersen, J.K.; Xiao, B.; Savan, A.; Löffler, T.; Baha, S.; Rossmeisl, J.; Schuhmann, W.; Ludwig, A. Unravelling Composition–Activity–Stability Trends in High Entropy Alloy Electrocatalysts by Using a Data-Guided Combinatorial Synthesis Strategy and Computational Modeling. Adv. Energy Mater. 2022, 12, 2103312. [Google Scholar] [CrossRef]
- Ahmed, U.; Alizadeh, M.; Rahim, N.A.; Shahabuddin, S.; Ahmed, M.S.; Pandey, A.K. A comprehensive review on counter electrodes for dye sensitized solar cells: A special focus on Pt-TCO free counter electrodes. Sol. Energy 2018, 174, 1097–1125. [Google Scholar] [CrossRef]
- Jiang, C.; Zhou, J.; Li, H.; Tan, L.; Li, M.; Tress, W.; Ding, L.; Grätzel, M.; Yi, C. Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability. Nano-Micro Lett. 2023, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Villena, A.; Galian, R.E. Present and Perspectives of Photoactive Porous Composites Based on Semiconductor Nanocrystals and Metal-Organic Frameworks. Molecules 2021, 26, 5620. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gao, P. Crystalline porous materials in perovskite solar cells: A mutually beneficial marriage. Sustain. Energy Fuels 2024, 8, 1185–1207. [Google Scholar] [CrossRef]
- Motti, S.G.; Krieg, F.; Ramadan, A.J.; Patel, J.B.; Snaith, H.J.; Kovalenko, M.V.; Johnston, M.B.; Herz, L.M. CsPbBr 3 Nanocrystal Films: Deviations from Bulk Vibrational and Optoelectronic Properties. Adv. Funct. Mater. 2020, 30, 1909904. [Google Scholar] [CrossRef]
- The Contactless Solution for Car-Body Multilayer Thickness Measurement. Available online: https://das-nano.com/irys-terahertz-technology/ (accessed on 5 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novelli, F. Terahertz Transmission through a Gold Mirror or Electrode. Materials 2024, 17, 3942. https://doi.org/10.3390/ma17163942
Novelli F. Terahertz Transmission through a Gold Mirror or Electrode. Materials. 2024; 17(16):3942. https://doi.org/10.3390/ma17163942
Chicago/Turabian StyleNovelli, Fabio. 2024. "Terahertz Transmission through a Gold Mirror or Electrode" Materials 17, no. 16: 3942. https://doi.org/10.3390/ma17163942
APA StyleNovelli, F. (2024). Terahertz Transmission through a Gold Mirror or Electrode. Materials, 17(16), 3942. https://doi.org/10.3390/ma17163942