Enhancing NIR Shielding Properties of Au/CsWO3 Composite via Physical Mixing and Solvothermal Processes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CsWO3 Nanorods
2.3. Synthesis of Gold Nanorods (AuNR)
2.4. Preparation of AuNR+CsWO3 Composite Materials by Physical Mixing Method
2.5. Preparation of AuNR@CsWO3 Composite Materials by Solvothermal Method
2.6. Characterizations
3. Results
3.1. AuNR+CsWO3 Nanocomposites by Physical Mixing Method
3.2. AuNR@CsWO3 Nanocomposites Prepared by the Solvothermal Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 2022 Global Status Report for Buildings and Construction. Available online: https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction (accessed on 14 May 2024).
- Power to Heat and Cooling: Status. Available online: https://www.irena.org/Innovation-landscape-for-smart-electrification/Power-to-heat-and-cooling/Status (accessed on 14 May 2024).
- Li, Y.; Liu, J.; Liang, J.; Yu, X.; Li, D. Tunable solar-heat shielding property of transparent films based on mesoporous Sb-doped SnO2 microspheres. ACS Appl. Mater. Interfaces 2015, 7, 6574–6583. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zeng, X.; Kong, X.; Bian, S.; Chen, J. A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surf. Sci. 2012, 258, 8564–8569. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Tian, X.; Zheng, K.; Wu, Z.; Ding, X.; Ye, X. Preparation of UV-curable transparent poly(urethane acrylate) nanocomposites with excellent UV/IR shielding properties. Compos. Sci. Technol. 2014, 94, 105–110. [Google Scholar] [CrossRef]
- Okuhara, Y.; Kato, T.; Matsubara, H.; Isu, N. Near-infrared reflection from periodically aluminium-doped zinc oxide thin films. Thin Solid. Films 2011, 519, 2280–2286. [Google Scholar] [CrossRef]
- Qi, Y.; Yin, X.; Zhang, J. Transparent and heat-insulation plasticized polyvinyl chloride (PVC) thin film with solar spectrally selective property. Sol. Energy Mater. Sol. Cells 2016, 151, 30–35. [Google Scholar] [CrossRef]
- Wang, L.; Hang, J.; Shi, L.; Sun, X.; Xu, F. Preparation and characterization of NIR cutoff antimony doped tin oxide/hybrid silica coatings. Mater. Lett. 2012, 87, 35–38. [Google Scholar] [CrossRef]
- Sun, H.; Liu, B.; Liu, X.; Yin, Z. Dispersion of antimony doped tin oxide nanopowders for preparing transparent thermal insulation water-based coatings. J. Mater. Res. 2017, 32, 2414–2422. [Google Scholar] [CrossRef]
- Hussain, Z. Dopant-dependent reflectivity and refractive index of microcrystalline HxWO3 and LixWO3 bronze thin films. Appl. Opt. 2002, 41, 6708–6724. [Google Scholar] [CrossRef]
- Gu, Z.; Ma, Y.; Zhai, T.; Gao, B.; Yang, W.; Yao, J. A simple hydrothermal method for the large-scale synthesis of single-crystal potassium tungsten bronze nanowires. Chem. Eur. J. 2006, 12, 7717–7723. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Y.; Zhang, P. Theory of the color change of NaxWO3 as a function of Na-charge doping. Phys. Rev. B 2009, 79, 205113. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, X.; Huang, Y.; Zhou, Z.; Shen, S. Hydrothermal Synthesis and Characterization of Cs0.32WO3 Rod-like Nanoparticles with Excellent Near-Infrared Shielding Property; Springer: Singapore, 2018; pp. 337–345. [Google Scholar]
- Takeda, H.; Adachi, K. Near infrared absorption of tungsten oxide nanoparticle dispersions. J. Am. Ceram. Soc. 2007, 90, 4059–4061. [Google Scholar] [CrossRef]
- Guo, C.; Yin, S.; Huang, L.; Sato, T. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property. ACS Appl. Mater. Interfaces 2011, 3, 2794–2799. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Yin, S.; Dong, Q.; Sato, T. Near-infrared absorption properties of RbxWO3 nanoparticles. CrystEngComm. 2012, 14, 7727–7732. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, L.; Chen, Z.; Cao, C.; Gao, Y.; Luo, H. Synthesis of CsxWO3 nanoparticles and their NIR shielding properties. Ceram. Int. 2018, 44, 13469–13475. [Google Scholar] [CrossRef]
- Shi, F.; Liu, J.; Dong, X.; Xu, Q.; Luo, J.; Ma, H. Hydrothermal synthesis of CsxWO3 and the effects of N2 annealing on its microstructure and heat shielding properties. J. Mater. Sci. Technol. 2014, 30, 342–346. [Google Scholar] [CrossRef]
- Kofman, R.; Cheyssac, P.; Aouaj, A.; Lereah, Y.; Deutscher, G.; Ben-David, T.; Penisson, J.M.; Bourret, A. Surface melting enhanced by curvature effects. Surf. Sci. 1994, 303, 231–246. [Google Scholar] [CrossRef]
- Guo, C.; Yin, S.; Huang, L.; Yang, L.; Sato, T. Discovery of an excellent IR absorbent with a broad working waveband: CsxWO3 nanorods. Chem. Commun. 2011, 47, 8853–8855. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, W.; Hu, Y.; Wang, Y.; Lu, L.; Wang, S. Preparation and overall energy performance assessment of wide waveband two-component transparent NIR shielding coatings. Sol. Energy Mater. Sol. Cells 2017, 168, 119–129. [Google Scholar] [CrossRef]
- Wu, X.; Yin, S.; Xue, D.; Komarneni, S.; Sato, T. CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale 2015, 7, 17048–17054. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, J.; Shi, F.; Liu, S.; Fan, C.; Xu, Q.; Shao, G. Synthesis and characterization of F-doped Cs0.33WO3-xFx particles with improved near infrared shielding ability. J. Solid. State Chem. 2015, 221, 255–262. [Google Scholar]
- Xia, Y.; Halas, N.J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–348. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Makhsin, S.R.; Teoh, P.L.; Razak, K.A. Synthesis of gold nanoparticles and its conjugation strategies to biomolecules for biomedical applications. Rev. Adv. Sci. Eng. 2015, 4, 3–21. [Google Scholar] [CrossRef]
- Guo, C.; Yin, S.; Yan, M.; Sato, T. Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. J. Mater. Chem. 2011, 21, 5099–5105. [Google Scholar] [CrossRef]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067. [Google Scholar] [CrossRef]
- Gates-Rector, S.; Blanton, T. The powder diffraction file: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Kochuveedu, S.T.; Oh, J.H.; Do, Y.R.; Kim, D.H. Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles. Chem. Eur. J. 2012, 18, 7467–7472. [Google Scholar] [CrossRef]
- Zhu, Q.; Lu, J.; Wang, Y.; Qin, F.; Shi, Z.; Xu, C. Burstein-Moss effect behind Au surface plasmon enhanced intrinsic emission of ZnO microdisks. Sci. Rep. 2016, 6, 36194. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Gong, L.L.; Ding, S.J.; Liu, J.; Ma, S.; Wang, J.H.; Yang, D.J.; Pan, G.M.; Hao, Z.H.; Zhou, L.; et al. Tunable charge transfer and dual plasmon resonances of Au@WO3−x hybrids and applications in photocatalytic hydrogen generation. Plasmonics 2020, 15, 21–29. [Google Scholar] [CrossRef]
- Fiedler, S.; Lem, L.O.L.C.; Ton-That, C.; Hoffmann, A.; Phillips, M.R. Enhancement of the UV emission from gold/ZnO nanorods exhibiting no green luminescence. Opt. Mater. Express 2020, 10, 1476–1487. [Google Scholar] [CrossRef]
- Zhang, S.G.; Wen, L.; Li, J.L.; Gao, F.L.; Zhang, X.W.; Li, L.H.; Li, G.Q. Plasmon-enhanced ultraviolet photoluminescence from highly ordered ZnO nanorods/graphene hybrid structure decorated with Au nanospheres. J. Phys. D Appl. Phys. 2014, 47, 495103. [Google Scholar]
- Wu, X.; Wang, J.; Zhang, G.; Katsumata, K.I.; Yanagisawa, K.; Sato, T.; Yin, S. Series of MxWO3/ZnO (M = K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions. Appl. Catal. B 2017, 201, 128–136. [Google Scholar] [CrossRef]
- Petrova, H.; Juste, J.P.; Pastoriza-Santos, I.; Hartland, G.V.; Liz-Marzan, L.M.; Mulvaney, P. On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating. Phys. Chem. Chem. Phys. 2006, 8, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Piwnuan, C.; Wootthikanokkhan, J.; Muangphat, C. NIR shielding performance and spectral selectivity of PVB interlayer films loaded with composite fillers derived from CsWO3 coupled with Au nanorods. J. Mater. Chem. C 2023, 11, 13946–13956. [Google Scholar] [CrossRef]
- Barik, R.; Jena, B.K.; Mohapatra, M. Metal doped mesoporous FeOOH nanorods for high performance supercapacitors. RSC Adv. 2017, 7, 49083–49090. [Google Scholar] [CrossRef]
- Venkatesan, A.; Krishna Chandar, N.R.; Kandasamy, A.; Karl Chinnu, M.; Nagappan Marimuthu, K.; Mohan Kumar, R.; Jayavel, R. Luminescence and electrochemical properties of rare earths (Gd, Nd) doped V2O5 nanostructures synthesized by non-aqueous sol-gel route. RSC Adv. 2015, 5, 21778–21785. [Google Scholar] [CrossRef]
- Altunbek, M.; Kuku, G.; Culha, M. Gold nanoparticles in single-cell analysis for surface enhanced raman scattering. Molecules 2016, 21, 1617. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piwnuan, C.; Muangphat, C.; Wootthikanokkhan, J. Enhancing NIR Shielding Properties of Au/CsWO3 Composite via Physical Mixing and Solvothermal Processes. Materials 2024, 17, 2746. https://doi.org/10.3390/ma17112746
Piwnuan C, Muangphat C, Wootthikanokkhan J. Enhancing NIR Shielding Properties of Au/CsWO3 Composite via Physical Mixing and Solvothermal Processes. Materials. 2024; 17(11):2746. https://doi.org/10.3390/ma17112746
Chicago/Turabian StylePiwnuan, Chanakarn, Chivarat Muangphat, and Jatuphorn Wootthikanokkhan. 2024. "Enhancing NIR Shielding Properties of Au/CsWO3 Composite via Physical Mixing and Solvothermal Processes" Materials 17, no. 11: 2746. https://doi.org/10.3390/ma17112746
APA StylePiwnuan, C., Muangphat, C., & Wootthikanokkhan, J. (2024). Enhancing NIR Shielding Properties of Au/CsWO3 Composite via Physical Mixing and Solvothermal Processes. Materials, 17(11), 2746. https://doi.org/10.3390/ma17112746