Study of Nanohydroxyapatite Coatings Prepared by the Electrophoretic Deposition Method at Various Voltage and Time Parameters
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microscopic Examinations of Surface
3.2. Wettability Test
3.3. Nanoscratch Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartmanski, M.; Zielinski, A.; Majkowska-Marzec, B.; Strugala, G. Effects of Solution Composition and Electrophoretic Deposition Voltage on Various Properties of Nanohydroxyapatite Coatings on the Ti13Zr13Nb Alloy. Ceram. Int. 2018, 44, 19236–19246. [Google Scholar] [CrossRef]
- Prasad, S.; Ehrensberger, M.; Gibson, M.P.; Kim, H.; Monaco, E.A. Biomaterial Properties of Titanium in Dentistry. J. Oral Biosci. 2015, 57, 192–199. [Google Scholar] [CrossRef]
- Malisz, K.; Świeczko-Żurek, B. Biological and Mechanical Research of Titanium Implants Covered with Bactericidal Coating. Eng. Biomater. 2022, 165, 17–22. [Google Scholar] [CrossRef]
- Jugowiec, D.; Łukaszczyk, A.; Cieniek, Ł.; Kot, M.; Reczyńska, K.; Cholewa-Kowalska, K.; Pamuła, E.; Moskalewicz, T. Electrophoretic Deposition and Characterization of Composite Chitosan-Based Coatings Incorporating Bioglass and Sol-Gel Glass Particles on the Ti-13Nb-13Zr Alloy. Surf. Coat. Technol. 2017, 319, 33–46. [Google Scholar] [CrossRef]
- Mohanta, M.; Thirugnanam, A. Commercial Pure Titanium—A Potential Candidate for Cardiovascular Stent. Materwiss Werksttech 2022, 53, 1518–1543. [Google Scholar] [CrossRef]
- Korei, N.; Solouk, A.; Haghbin Nazarpak, M.; Nouri, A. A Review on Design Characteristics and Fabrication Methods of Metallic Cardiovascular Stents. Mater. Today Commun. 2022, 31, 103467. [Google Scholar] [CrossRef]
- Malisz, K.; Świeczko-Żurek, B. Vascular Stents—Materials and Manufacturing Technologies. Eng. Biomater. 2022, 166, 22–28. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, Z.; Li, W.; Fan, Y.; Li, Z.; Wei, J. Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. Crystals 2021, 11, 149. [Google Scholar] [CrossRef]
- Oliveira, H.L.; Da Rosa, W.L.O.; Cuevas-Suárez, C.E.; Carreño, N.L.V.; da Silva, A.F.; Guim, T.N.; Dellagostin, O.A.; Piva, E. Histological Evaluation of Bone Repair with Hydroxyapatite: A Systematic Review. Calcif. Tissue Int. 2017, 101, 341–354. [Google Scholar] [CrossRef]
- Neto, J.V.C.; Teixeira, A.B.V.; dos Reis, A. Hydroxyapatite Coatings versus Osseointegration in Dental Implants: A Systematic Review. J. Prosthet. Dent. 2023, in press. [Google Scholar] [CrossRef]
- Nikfallah, A.; Mohammadi, A.; Ahmadakhondi, M.; Ansari, M. Synthesis and Physicochemical Characterization of Mesoporous Hydroxyapatite and Its Application in Toothpaste Formulation. Heliyon 2023, 9, e20924. [Google Scholar] [CrossRef] [PubMed]
- Abdul Samad, A.; Jusoh, N.; Abd Razak, S.I.; Saidin, S.; Sahalan, M. Low-Temperature Thermal Treatment’s Impact on Hydroxyapatite Nanofiber Characteristics. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Habibah, T.U.; Amlani, D.V.; Brizuela, M. Hydroxyapatite Dental Material; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Javidi, M.; Javadpour, S.; Bahrololoom, M.E.; Ma, J. Electrophoretic Deposition of Natural Hydroxyapatite on Medical Grade 316L Stainless Steel. Mater. Sci. Eng. 2008, 28, 1509–1515. [Google Scholar] [CrossRef]
- Fielding, G.A.; Roy, M.; Bandyopadhyay, A.; Bose, S. Antibacterial and Biological Characteristics of Silver Containing and Strontium Doped Plasma Sprayed Hydroxyapatite Coatings. Acta Biomater. 2012, 8, 3144–3152. [Google Scholar] [CrossRef]
- Djošić, M.; Janković, A.; Mišković-Stanković, V. Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. Materials 2021, 14, 5391. [Google Scholar] [CrossRef] [PubMed]
- Radha, G.; Balakumar, S. Influence of Anodization in Electrophoretic Deposition of Strontium Substituted Hydroxyapatite Coatings. Mater. Lett. 2024, 357, 135778. [Google Scholar] [CrossRef]
- Mehrvarz, A.; Khalil-Allafi, J.; Motallebzadeh, A.; Khalili, V. The Effect of ZnO Nanoparticles on Nanomechanical Behavior of Hydroxyapatite Electrodeposited on NiTi Biomedical Alloy. Ceram. Int. 2022, 48, 35039–35049. [Google Scholar] [CrossRef]
- Dudek, K.; Goryczka, T.; Dulski, M.; Psiuk, B.; Szurko, A.; Lekston, Z. Functionalization of the Implant Surface Made of NiTi Shape Memory Alloy. Materials 2023, 16, 1609. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.R.; Abizaid, A.; Costa, R.; Feres, F.; Tanajura, L.F.; Abizaid, A.; Maldonado, G.; Staico, R.; Siqueira, D.; Sousa, A.G.M.R.; et al. 1-Year Results of the Hydroxyapatite Polymer-Free Sirolimus-Eluting Stent for the Treatment of Single De Novo Coronary Lesions: The VESTASYNC I Trial. JACC Cardiovasc. Interv. 2009, 2, 422–427. [Google Scholar] [CrossRef]
- Mehdizade, M.; Eivani, A.R.; Asgari, H.; Naghshin, Y.; Jafarian, H.R. Assessment of Microstructure, Biocompatibility and in-Vitro Biodegradation of a Biomedical Mg-Hydroxyapatite Composite for Bone Tissue Engineering. J. Mater. Res. Technol. 2023, 27, 852–875. [Google Scholar] [CrossRef]
- Akram, W.; Khan, R.; Petrů, M.; Amjad, M.; Ahmad, K.; Yasir, M.; Ahmad, S.; Rahimian Koloor, S.S. Hydroxyapatite Coating for Control Degradation and Parametric Optimization of Pure Magnesium: An Electrophoretic Deposition Technique for Bio-degradable Implants. J. Mater. Res. Technol. 2023, 26, 2587–2600. [Google Scholar] [CrossRef]
- Erdem, U.; Dogan, D.; Bozer, B.M.; Turkoz, M.B.; Yıldırım, G.; Metin, A.U. Fabrication of Mechanically Advanced Polydopamine Decorated Hydroxyapatite/Polyvinyl Alcohol Bio-Composite for Biomedical Applications: In-Vitro Physicochemical and Biological Evaluation. J. Mech. Behav. Biomed. Mater. 2022, 136, 105517. [Google Scholar] [CrossRef] [PubMed]
- Kharisov, B.I.; Kharissova, O.V.; González, L.T.; Méndez, Y.P.; Uflyand, I.E.; Gómez de la Fuente, I. Hydroxyapatite Composites with Carbon Allotropes: Preparation, Properties, and Applications. Particuology 2024, 88, 239–265. [Google Scholar] [CrossRef]
- Han, W.; Lui, L.; Zhu, Q. Electrodeposition of graphene oxide-hydroxyapatite composite coating on titanium substrate. Ceram. Int. 2023, 49, 9647–9656. [Google Scholar] [CrossRef]
- Manso, M.; Jiménez, C.; Morant, C.; Herrero, P.; Martínez-Duart, J.M. Electrodeposition of Hydroxyapatite Coatings in Basic Conditions. Biomaterials 2000, 21, 1755–1761. [Google Scholar] [CrossRef]
- Pani, R.; Ranjan Behera, R.; Roy, S. Electrophoretic Deposition of Hydroxyapatite Coating: A State of Art. Mater. Today Proc. 2022, 62, 4086–4093. [Google Scholar] [CrossRef]
- Zhang, C.; Uchikoshi, T.; Liu, L.; Iwanami-Kadowaki, K.; Uezono, M.; Moriyama, K.; Kikuchi, M. Antibacterial-Functionalized Ag Loaded-Hydroxyapatite (HAp) Coatings Fabricated by Electrophoretic Deposition (EPD) Process. Mater. Lett. 2021, 297, 129955. [Google Scholar] [CrossRef]
- Maleki-Ghaleh, H.; Khalili, V.; Khalil-Allafi, J.; Javidi, M. Hydroxyapatite Coating on NiTi Shape Memory Alloy by Electrophoretic Deposition Process. Surf. Coat. Technol. 2012, 208, 57–63. [Google Scholar] [CrossRef]
- Muntean, R.; Brîndușoiu, M.; Buzdugan, D.; Nemeș, N.S.; Kellenberger, A.; Uțu, I.D. Characteristics of Hydroxyapatite-Modified Coatings Based on TiO2 Obtained by Plasma Electrolytic Oxidation and Electrophoretic Deposition. Materials 2023, 16, 1410. [Google Scholar] [CrossRef]
- Laska, A.; Bartmański, M. Parameters of the Electrophoretic Deposition Process and Its Influence on the Morphology of Hydroxyapatite Coatings: A Review. Mater. Eng. 2020, 1, 20–25. [Google Scholar] [CrossRef]
- Xiao, X.F.; Liu, R.F. Effect of Suspension Stability on Electrophoretic Deposition of Hydroxyapatite Coatings. Mater. Lett. 2006, 60, 2627–2632. [Google Scholar] [CrossRef]
- Bartmański, M.; Pawłowski, Ł.; Belcarz, A.; Przekora, A.; Ginalska, G.; Strugała, G.; Cieślik, B.M.; Pałubicka, A.; Zieliński, A. The Chemical and Biological Properties of Nanohydroxyapatite Coatings with Antibacterial Nanometals, Obtained in the Electrophoretic Process on the Ti13Zr13Nb Alloy. Int. J. Mol. Sci. 2021, 22, 3172. [Google Scholar] [CrossRef] [PubMed]
- Bartmański, M.; Pawłowski, Ł.; Mielewczyk-Gryń, A.; Strugała, G.; Rokosz, K.; Gaiaschi, S.; Chapon, P.; Raaen, S.; Zieliński, A. The Influence of Nanometals, Dispersed in the Electrophoretic Nanohydroxyapatite Coatings on the Ti13Zr13Nb Alloy, on Their Morphology and Mechanical Properties. Materials 2021, 14, 1638. [Google Scholar] [CrossRef] [PubMed]
- Zhitomirsky, I.; Gal-Or, L. Electrophoretic Deposition of Hydroxyapatite. J. Mater. Sci. Mater. Med. 1997, 8, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Drevet, R.; Fauré, J.; Benhayoune, H. Bioactive Calcium Phosphate Coatings for Bone Implant Applications: A Review. Coatings 2023, 13, 1091. [Google Scholar] [CrossRef]
- Bartmanski, M.; Cieslik, B.; Glodowska, J.; Kalka, P.; Pawlowski, L.; Pieper, M.; Zielinski, A. Electrophoretic Deposition (EPD) of Nanohydroxyapatite—Nanosilver Coatings on Ti13Zr13Nb Alloy. Ceram. Int. 2017, 43, 11820–11829. [Google Scholar] [CrossRef]
- Pawłowski, Ł.; Bartmański, M.; Mielewczyk-Gryń, A.; Cieślik, B.M.; Gajowiec, G.; Zieliński, A. Electrophoretically Deposited Chitosan/Eudragit E 100/AgNPs Composite Coatings on Titanium Substrate as a Silver Release System. Materials 2021, 14, 4533. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-Y.; Chen, Y.-N.; Hu, J.-J.; Chang, C.-H. Comparison of Mechanical Stability of Elastic Titanium, Nickel-Titanium, and Stainless Steel Nails Used in the Fixation of Diaphyseal Long Bone Fractures. Materials 2018, 11, 2159. [Google Scholar] [CrossRef]
- Bartmanski, M. The Properties of Nanosilver—Doped Nanohydroxyapatite Coating On the Ti13zr13Nb Alloy. Adv. Mater. Sci. 2017, 17, 18–28. [Google Scholar] [CrossRef]
Sample Name | Applied Voltage [V] | Deposition Time [min] |
---|---|---|
nHAp10/2 | 10 | 2 |
nHAp10/5 | 10 | 5 |
nHAp20/2 | 20 | 2 |
nHAp20/5 | 20 | 5 |
nHAp30/2 | 30 | 2 |
nHAp30/5 | 30 | 5 |
Sample Name | Sa [nm] | Sq [nm] |
---|---|---|
nHAp10/2 | 232 | 300 |
nHAp10/5 | 209 | 264 |
nHAp20/2 | 201 | 269 |
nHAp20/5 | 208 | 272 |
nHAp30/2 | 254 | 325 |
nHAp30/5 | 280 | 365 |
Sample Name | Thickness [µm] | Sample Name | Thickness [µm] | Sample Name | Thickness [µm] |
---|---|---|---|---|---|
nHAp10/2 | 1.2 | nHAp20/2 | 3.3 | nHAp30/2 | 4.8 |
nHAp10/5 | 4.2 | nHAp20/5 | 5.1 | nHAp30/5 | 7.9 |
Sample Name | Critical Load (mN) |
---|---|
nHAp10/2 | no delamination |
nHAp10/5 | no delamination |
nHAp20/2 | no delamination |
nHAp20/5 | 126 ± 16 |
nHAp30/2 | no delamination |
nHAp30/5 | not performed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malisz, K.; Świeczko-Żurek, B.; Olive, J.-M.; Gajowiec, G.; Pecastaings, G.; Laska, A.; Sionkowska, A. Study of Nanohydroxyapatite Coatings Prepared by the Electrophoretic Deposition Method at Various Voltage and Time Parameters. Materials 2024, 17, 2242. https://doi.org/10.3390/ma17102242
Malisz K, Świeczko-Żurek B, Olive J-M, Gajowiec G, Pecastaings G, Laska A, Sionkowska A. Study of Nanohydroxyapatite Coatings Prepared by the Electrophoretic Deposition Method at Various Voltage and Time Parameters. Materials. 2024; 17(10):2242. https://doi.org/10.3390/ma17102242
Chicago/Turabian StyleMalisz, Klaudia, Beata Świeczko-Żurek, Jean-Marc Olive, Grzegorz Gajowiec, Gilles Pecastaings, Aleksandra Laska, and Alina Sionkowska. 2024. "Study of Nanohydroxyapatite Coatings Prepared by the Electrophoretic Deposition Method at Various Voltage and Time Parameters" Materials 17, no. 10: 2242. https://doi.org/10.3390/ma17102242
APA StyleMalisz, K., Świeczko-Żurek, B., Olive, J.-M., Gajowiec, G., Pecastaings, G., Laska, A., & Sionkowska, A. (2024). Study of Nanohydroxyapatite Coatings Prepared by the Electrophoretic Deposition Method at Various Voltage and Time Parameters. Materials, 17(10), 2242. https://doi.org/10.3390/ma17102242