Effect of In Situ Heating on the Growth and Electrochromic Properties of Tungsten Trioxide Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ITO-Coated Conductive Glass
2.2. Synthesis of WO3 Thin Films by Magnetron Sputtering
2.3. Characterizations
2.4. Electrochromic Performance Test
3. Results and Discussion
3.1. Structural Analysis
3.2. Surface Morphology Analysis
3.3. Chemical Valence Analysis
3.4. Electrochromic Performance Testing and Analysis
3.5. Cyclic Stability Testing and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Film. 2014, 564, 1–38. [Google Scholar]
- Manjakkal, L.; Pereira, L.; Barimah, E.K.; Grey, P.; Franco, F.F.; Lin, Z.; Jose, G.; Hogg, R.A. Multifunctional flexible and stretchable electrochromic energy storage devices. Prog. Mater. Sci. 2024, 142, 101244. [Google Scholar] [CrossRef]
- Park, Y.J.; Lee, D.; Kang, K.-M.; Choi, S.; Shin, M.; Han, S.H.; Heo, I.; Jang, H.S.; Nah, Y.-C.; Kim, D.H. Enhanced electrochromic properties of Ag-incorporated WO3 nanocomposite thin films. Ceram. Int. 2023, 49, 17969–17976. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.; Lv, Y.; Cai, Z.; Shen, Y.; Ruhlmann, L.; Gan, L.; Liu, M. Electrode materials for electrochromic supercapacitors. Nanotechnology 2024, 35, 152001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, X.; Jiang, T.; Liu, H.; Fu, Y.; Zhang, D.; Geng, Z. Amorphous/crystalline WO3 dual phase laminated films: Fabrication, characterization and evaluation of their electrochromic performance for smart window applications. Sol. Energy Mater. Sol. Cells 2022, 244, 111820. [Google Scholar] [CrossRef]
- Au, B.W.-C.; Tamang, A.; Knipp, D.; Chan, K.-Y. Post-annealing effect on the electrochromic properties of WO3 films. Opt. Mater. 2020, 108, 110426. [Google Scholar]
- Zhou, K.; Wang, H.; Zhang, Q.; Liu, J.; Yan, H. Dynamic Process of Ions Transport and Cyclic Stability of WO3 Electrochromic Film. J. Inorg. Mater. 2021, 36, 152–160. [Google Scholar] [CrossRef]
- Kumar, K.N.; Sattar, S.A.; Shaik, H.; Ashok, R.G.V.; Jafri, R.I.; Dhananjaya, M.; Pawar, A.S.; Prakash, N.G.; Premkumar, R.; Ansar, S.; et al. Effect of partial pressure of oxygen, target current, and annealing on DC sputtered tungsten oxide (WO3) thin films for electrochromic applications. Solid State Ion. 2023, 399, 116275. [Google Scholar] [CrossRef]
- Wang, M.; He, Y.; Da Rocha, M.; Rougier, A.; Diao, X. Temperature dependence of the electrochromic properties of complementary NiO//WO3 based devices. Sol. Energy Mater. Sol. Cells 2021, 230, 111239. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, Y.; Zou, C.; Xu, K.; Luo, X.; Luo, T.; Li, J.; Yang, Q.; Shi, P.; Yuan, C. 2D ultra-thin WO3 nanosheets with dominant {002} crystal facets for high-performance xylene sensing and methyl orange photocatalytic degradation. J. Alloys Compd. 2019, 783, 848–854. [Google Scholar] [CrossRef]
- Dhanya, A.R.; Ganguly, D.; Sundara, R. High temperature annealed (002) oriented WO3 nanoplatelets with uniform Pt decoration as durable carbon free anode electrocatalyst for PEMFC application. Int. J. Hydrogen Energy 2022, 47, 24978–24990. [Google Scholar]
- Ji, R.; Yi, Y.-Q.-Q.; Wang, X.; Wu, X.; Huang, C.; Su, W.; Cui, Z. Optimizing thermal annealing temperatures towards improved and stable electrochromic polymeric films and devices. Thin Solid Film. 2024, 790, 140219. [Google Scholar] [CrossRef]
- Salje, E. Lattice dynamics of WO3. Acta Crystallographica Section A: Crystal Physics, Diffraction. Theor. Gen. Crystallogr. 1975, 31, 360–363. [Google Scholar]
- Zhang, J.G.; Benson, D.K.; Tracy, C.E.; Deb, S.K.; Czanderna, A.W.; Bechinger, C. Chromic mechanism in amorphous WO3 films. J. Electrochem. Soc. 1997, 144, 2022. [Google Scholar] [CrossRef]
- Rougier, A.; Portemer, F.; Quédé, A.; Marssi, M.E. Characterization of pulsed laser deposited WO3 thin films for electrochromic devices. Appl. Surf. Sci. 1999, 153, 1–9. [Google Scholar] [CrossRef]
- Daniel, M.F.; Desbat, B.; Lassegues, J.C.; Gerand, B.; Figlarz, M. Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J. Solid State Chem. 1987, 67, 235–247. [Google Scholar] [CrossRef]
- Guo, C.; Li, M.; Li, X.; Ning, H.; Qiu, T.; Luo, D.; Luo, C.; Xu, W.; Yao, R.; Peng, J. Rapid and low-temperature preparation of tungsten oxide electrochromic thin films by oxygen plasma treatment. Opt. Mater. 2023, 145, 114421. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, J.; Huang, Y.; Lin, D.; Ma, D.; Wang, J. Solvothermally grown WO3·H2O film and annealed WO3 film for wide-spectrum tunable electrochromic applications. Ceram. Int. 2023, 49, 29534–29541. [Google Scholar] [CrossRef]
- Tong, X.; Wang, J.; Zhang, P.; Lei, P.; Gao, Y.; Ren, R.; Zhang, S.; Zhu, R.; Cai, G. Insight into the structure–activity relationship in electrochromism of WO3 with rational internal cavities for broadband tunable smart windows. Chem. Eng. J. 2023, 470, 144130. [Google Scholar] [CrossRef]
- Garcia-Lobato, M.A.; Garcia, C.R.; Mtz-Enriquez, A.I.; Lopez-Badillo, C.M.; Garcias-Morales, C.; Muzquiz-Ramos, E.M.; Cruz-Ortiz, B.R. Enhanced electrochromic performance of NiO-MWCNTs thin films deposited by electrostatic spray deposition. Mater. Res. Bull. 2019, 114, 95–100. [Google Scholar] [CrossRef]
- Wang, R.; Lin, H.; Zhu, H.; Wan, M.; Shen, K.; Mai, Y. Preparation, investigation and application of nickel oxide thin films in flexible all-thin-film electrochromic devices: From material to device. J. Alloys Compd. 2022, 898, 162879. [Google Scholar] [CrossRef]
- Liu, H.-Q.; Yao, C.-B.; Liu, X.-J.; Jiang, C.-H. Heterointerface-enhanced ultrafast carrier dynamics and nonlinear optical response via constructing electronic structure-induced type-I ZnO-MoS2 n-n heterojunction. Appl. Surf. Sci. 2022, 580, 152222. [Google Scholar] [CrossRef]
- Park, Y.J.; Kang, K.-M.; Kang, J.H.; Han, S.H.; Jang, H.S.; Lee, J.Y.; Yoon, T.-S.; Nah, Y.-C.; Kim, D.H. Enhancement of electrochromic response and cyclic durability of WO3 thin films by stacking Nb2O5 layers. Appl. Surf. Sci. 2022, 582, 152431. [Google Scholar] [CrossRef]
- Zhong, J.; Huang, B.; Song, J.; Zhang, X.; Du, L.; Gao, Y.; Liu, W.; Kang, L. Stable WO3 electrochromic system based on NH4+ hydrogen bond chemistry. Chem. Eng. J. 2024, 480, 148098. [Google Scholar] [CrossRef]
- Kong, L.; Pan, L.; Guo, H.; Qiu, Y.; Alshahrani, W.A.; Amin, M.A.; Lin, J. Constructing WS2/WO3−x heterostructured electrocatalyst enriched with oxygen vacancies for accelerated hydrogen evolution reaction. J. Colloid Interface Sci. 2024, 664, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, S.; Kim, S.; Liu, W.; Wang, M.; Diao, X.; Lee, C.S. Surface morphology engineering of WO3 films for increasing Li ion insertion area in electrochromic supercapacitors (ECSCs). Electrochim. Acta 2023, 472, 143394. [Google Scholar] [CrossRef]
- de León, J.M.O.-R.; Acosta, D.R.; Pal, U.; Castañeda, L. Improving electrochromic behavior of spray pyrolised WO3 thin solid films by Mo doping. Electrochim. Acta 2011, 56, 2599–2605. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Li, W.; Li, Z.; Zhang, H.; Chen, M.; Sun, W.; Xiao, Y.; Zhao, J.; Li, Y. High-performance electrochromic WO3 film driven by controllable crystalline structure and its all-solid-state device. Sol. Energy Mater. Sol. Cells 2022, 237, 111564. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, M.; Mei, Z.; Liu, L.; Zhong, X.; Wang, M.; Diao, X. Enhanced electrochromic performance on novel W@NiO doped composite electrode via in situ heating. Vacuum 2022, 201, 111070. [Google Scholar] [CrossRef]
- Niklasson, G.A.; Granqvist, C.G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127–156. [Google Scholar] [CrossRef]
- Firat, Y.E.; Peksoz, A. Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential. Electrochim. Acta 2019, 295, 645–654. [Google Scholar] [CrossRef]
- Ma, D.; Wang, H.; Zhang, Q.; Li, Y. Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance. J. Mater. Chem. 2012, 22, 16633–16639. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Y.; Li, N.; Tan, C.; Rong, Y.; Chen, H.; Jia, J.; Zhang, L. Process optimization and effect of sputtering pressure on electrochromic properties of flexible WO3 films prepared by DC magnetron sputtering. Phys. B Condens. Matter 2023, 654, 414728. [Google Scholar] [CrossRef]
- Ashok, R.G.V.; Shaik, H.; Kumar, K.N.; Jafri, R.I.; Sattar, S.A.; Gupta, J.; Doreswamy, B.H. Thickness dependent tungsten trioxide thin films deposited using DC magnetron sputtering for electrochromic applications. Mater. Today Proc. 2023, 80, 817–823. [Google Scholar]
- Pooyodying, P.; Son, Y.-H.; Sung, Y.-M.; Ok, J.-W. The effect of sputtering Ar gas pressure on optical and electrical properties of flexible ECD device with WO3 electrode deposited by RF magnetron sputtering on ITO/PET substrate. Opt. Mater. 2022, 123, 111829. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, M.; Liu, W.; Li, L.; Yan, Y. Electrochemical investigation of electrochromic devices based on NiO and WO3 films using different lithium salts electrolytes. Electrochim. Acta 2017, 247, 107–115. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Feng, X.; Xiang, Q. Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment. Chin. J. Catal. 2020, 41, 21–30. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, W.; Bai, X.; Huang, W.; Gu, Y.; Chen, S.; Lan, J. Highly water dispersible collagen/polyaniline nanocomposites with strong adhesion for electrochromic films with enhanced cycling stability. Int. J. Biol. Macromol. 2023, 241, 124657. [Google Scholar] [CrossRef]
- Arvizu, M.A.; Qu, H.-Y.; Niklasson, G.A.; Granqvist, C.G. Electrochemical pretreatment of electrochromic WO3 films gives greatly improved cycling durability. Thin Solid Film. 2018, 653, 1–3. [Google Scholar] [CrossRef]
2 Theta (°) | Lattice Plane |
---|---|
23.119 | (002) |
23.586 | (020) |
24.380 | (200) |
33.266 | (022) |
Sample | WO3−RT | WO3−100 | WO3−150 | WO3−200 | WO3−250 | WO3−300 |
---|---|---|---|---|---|---|
Rq/nm | 2.57 | 2.77 | 2.96 | 3.33 | 3.55 | 3.95 |
Ra/nm | 2.04 | 2.22 | 2.33 | 2.64 | 2.82 | 3.15 |
Samples | W (at%) | O (at%) |
---|---|---|
WO3−RT | 23.09 | 76.91 |
WO3−100 | 22.42 | 77.58 |
WO3−150 | 23.10 | 76.90 |
WO3−200 | 23.61 | 76.39 |
WO3−250 | 22.74 | 77.26 |
WO3−300 | 22.81 | 77.19 |
Samples | WO3−RT | WO3−100 | WO3−150 | WO3−200 | WO3−250 | WO3−300 |
---|---|---|---|---|---|---|
tc (−1~1 V)/s | 21.8 | 23.2 | 24.2 | 21.6 | 20.2 | / |
tb (−1~1 V)/s | 13.4 | 16.6 | 17.2 | 31.2 | 33.6 | / |
tc (−1~2 V)/s | / | / | / | / | 20.0 | 20.8 |
tb (−1~2 V)/s | / | / | / | / | 19.4 | 41.2 |
Sample | WO3−RT | WO3−100 | WO3−150 | WO3−200 | WO3−250 | WO3−300 |
---|---|---|---|---|---|---|
Transmittance of bleached state/% (@633 nm) | 94.9 | 95.7 | 92.9 | 98.5 | 96.7 | 96.7 |
Transmittance of colored state/% (@633 nm) | 24.8 | 24.3 | 19.4 | 17.2 | 19.0 | 16.0 |
Contrast/% (@633 nm) | 70.1 | 71.4 | 73.5 | 81.3 | 77.7 | 80.7 |
L* of bleached state | 84.12 | 86.12 | 87.25 | 87.82 | 87.77 | 88.13 |
a* of bleached state | −4.50 | −2.50 | −1.19 | −2.33 | −0.81 | −4.23 |
b* of bleached state | −5.07 | −5.29 | −5.89 | −3.95 | −2.35 | −1.66 |
L* of colored state | 46.41 | 47.30 | 40.92 | 35.74 | 29.32 | 31.62 |
a* of colored state | −8.78 | −7.19 | −2.62 | 1.07 | 7.41 | 9.22 |
b* of colored state | −1.23 | −4.35 | −11.97 | −18.31 | −22.12 | −24.06 |
No. of Cycles | 0 | 500 | 1000 | 1500 |
---|---|---|---|---|
Transmittance of bleached state/% (@633 nm) | 94.9 | 96.1 | 95.9 | 90.3 |
Transmittance of colored state/% (@633 nm) | 24.8 | 24.7 | 24.2 | 42.2 |
Contrast/% (@633 nm) | 70.1 | 71.4 | 71.7 | 48.1 |
L* of bleached state | 84.12 | 81.72 | 75.66 | 82.1 |
a* of bleached state | −4.5 | −5.12 | −5.57 | −4.24 |
b* of bleached state | −5.07 | −8.66 | −7.34 | 1.49 |
L* of colored state | 46.41 | 39.48 | 46.05 | 50.7 |
a* of colored state | −8.78 | 2.02 | −8.12 | −6.43 |
b* of colored state | −1.23 | −8.64 | −8.53 | 4.19 |
No. of Cycles | 0 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 |
---|---|---|---|---|---|---|---|
Transmittance of bleached state/% (@633 nm) | 96.7 | 88.9 | 88.9 | 87.8 | 83.1 | 82.6 | 75.0 |
Transmittance of colored state/% (@633 nm) | 19.0 | 10.2 | 14.4 | 12.7 | 11.0 | 14.2 | 14.8 |
Contrast/% (@633 nm) | 77.7 | 78.7 | 74.5 | 75.1 | 72.1 | 68.4 | 60.2 |
L* of bleached state | 87.77 | 88.21 | 86.27 | 82.19 | 81.36 | 82.43 | 74.11 |
a* of bleached state | −0.81 | −3.33 | −1.11 | −0.72 | 0.25 | −0.55 | 1.41 |
b* of bleached state | −2.35 | −4.26 | −1.27 | −0.79 | 1.10 | 0.39 | 3.37 |
L* of colored state | 29.32 | 27.54 | 34.34 | 28.74 | 27.64 | 31.95 | 41.33 |
a* of colored state | 7.41 | 11.74 | 1.22 | 4.81 | 0.78 | 0.52 | −7.20 |
b* of colored state | −22.12 | −20.49 | −29.00 | −28.09 | −26.57 | −28.33 | −21.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, X.; Zhang, Y.; Zhang, X.; Liu, J.; Wu, Y. Effect of In Situ Heating on the Growth and Electrochromic Properties of Tungsten Trioxide Thin Films. Materials 2024, 17, 2214. https://doi.org/10.3390/ma17102214
Xu J, Li X, Zhang Y, Zhang X, Liu J, Wu Y. Effect of In Situ Heating on the Growth and Electrochromic Properties of Tungsten Trioxide Thin Films. Materials. 2024; 17(10):2214. https://doi.org/10.3390/ma17102214
Chicago/Turabian StyleXu, Jinfeng, Xirui Li, Yong Zhang, Xueru Zhang, Jiaqin Liu, and Yucheng Wu. 2024. "Effect of In Situ Heating on the Growth and Electrochromic Properties of Tungsten Trioxide Thin Films" Materials 17, no. 10: 2214. https://doi.org/10.3390/ma17102214
APA StyleXu, J., Li, X., Zhang, Y., Zhang, X., Liu, J., & Wu, Y. (2024). Effect of In Situ Heating on the Growth and Electrochromic Properties of Tungsten Trioxide Thin Films. Materials, 17(10), 2214. https://doi.org/10.3390/ma17102214