Enhancement of Filtration Performance Characteristics of Glass Fiber-Based Filter Media, Part 1: Mechanical Modification with Electrospun Nanofibers
Abstract
1. Introduction
2. Materials and Methods
2.1. Textile Material Characterization Procedures
2.2. Evaluation of the Filtration Performance Characteristics
2.3. The Impact of Physical Filter Media Modifications
3. Experimental Results
- Nb = Number of particles before the filter medium;
- Na = Number of particles after the filter medium.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eyvaz, M.; Arslan, S.; Gürbulak, E.; Yüksel, E. Textile materials in liquid filtration practices: Current status and perspectives in water and wastewater treatment. Text. Adv. Appl. 2017, 1, 293–320. [Google Scholar] [CrossRef]
- Sutherland, K.S.; Chase, G. Filters and Filtration Handbook; Elsevier: Amsterdam, The Netherlands, 2011; ISBN -978-1-8561-7464-0. [Google Scholar]
- Ji, X.; Huang, J.; Teng, L.; Li, S.; Li, X.; Cai, W.; Chen, Z.; Lai, Y. Advances in particulate matter filtration: Materials, performance, and application. Green Energy Environ. 2023, 8, 673–697. [Google Scholar] [CrossRef]
- Wente, V.A.; Lucas, R.T. Formation of filter materials from glass fibers. Ind. Eng. Chem. 1956, 48, 219–222. [Google Scholar] [CrossRef]
- Qin, X.; Subianto, S. Electrospun Nanofibers for Filtration Applications; Woodhead Publishing: Sawston, UK, 2017; pp. 449–466. [Google Scholar] [CrossRef]
- Qin, X.; Wang, S. Filtration properties of electrospinning nanofibers. J. Appl. Polym. Sci. 2006, 102, 1285–1290. [Google Scholar] [CrossRef]
- Graham, K.; Ouyang, M.; Raether, T.; Grafe, T.; McDonald, B.; Knauf, P. Polymeric nanofibers in air filtration applications. In Proceedings of the 5th Annual Technical Conference & Expo of the American Filtration & Separations Society, Galveston, TX, USA, 9–12 April 2002. [Google Scholar]
- Marzocchi, A.; Lachut, F.; Willis, W.H. Glass Fibers and Their Use as Filter Media. J. Air Pollut. Control. Assoc. 1962, 12, 38–42. [Google Scholar] [CrossRef]
- Brown, P.; Cox, C.L. Fibrous Filter Media; Woodhead Publishing: Sawston, UK, 2017; ISBN 0081005733. [Google Scholar]
- Cioara, L.; Cioara, I. Functional Design of the Woven Filters. In Advances in Modern Woven Fabrics Technology; IntechOpen: London, UK. [CrossRef]
- Purchas, D.B.; Sutherland, K. Handbook of Filter Media; Elsevier: Amsterdam, The Netherlands, 2002; ISBN 1-85617-375-5. [Google Scholar]
- Seydibeyoglu, M.O.; Mohanty, A.K.; Misra, M. Fiber Technology for Fiber-Reinforced Composites; Woodhead Publishing: Sawston, UK, 2017; pp. 153–167. [Google Scholar]
- Bauer, J.F.; Manville, J. Properties of glass fiber for filtration: Influence of forming process. Int. Nonwovens J. 2004, 4, 2–7. [Google Scholar] [CrossRef]
- Sakthivel, S.; Ezhil, A.J.; Ramachandran, T. Development of needle-punched nonwoven fabrics from reclaimed fibers for air filtration applications. J. Eng. Fibers Fabr. 2014, 9, 149–154. [Google Scholar] [CrossRef]
- Visvanathan, C.; Aim, R.B. Water, Wastewater, and Sludge Filtration; CRC Press: Boca Raton, FL, USA, 2020; ISBN 0-8493-6983-5. [Google Scholar]
- Zou, C.; Shi, Y.; Qian, X. Characterization of glass fiber felt and its performance as an air filtration media. J. Ind. Text. 2022, 51, 1186S–1206S. [Google Scholar] [CrossRef]
- Keirouz, A.; Wang, Z.; Reddy, V.S.; Nagy, Z.K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The history of electrospinning: Past, present, and future developments. Adv. Mater. Technol. 2023, 8, 2201723. [Google Scholar] [CrossRef]
- Cramariuc, B.; Cramariuc, R.; Scarlet, R.; Manea, L.R.; Lupu, I.G.; Cramariuc, O. Fiber diameter in electrospinning process. J. Electrost. 2013, 71, 189–198. [Google Scholar] [CrossRef]
- Teo, W.E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89. [Google Scholar] [CrossRef] [PubMed]
- Doshi, J.; Reneker, D.H. Electrospinning process and applications of electrospun fibers. J. Electrost. 1995, 35, 151–160. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, G.; Liu, A.; Guo, Z.; Sun, W.; Shan, F. Photochemical Activation of Electrospun In2O3 Nanofibers for High-Performance Electronic Devices. J. ACS Appl Mater Interfaces. 2017, 9, 10805–10812. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, X.; He, Y.; Ma, J.; Ni, G.; Zhou, S. From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 2018, 81, 80–113. [Google Scholar] [CrossRef]
- Manea, L.R.; Scarlet, R.; Leon, A.L.; Sandu, I. Control of Nanofibers production process through electrospinning. Rev. Chim. 2015, 66, 640–644. [Google Scholar]
- Al-Abduljabbar, A.; Farooq, I. Electrospun polymer nanofibers: Processing, properties, and applications. Polymers 2022, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; He, W.; Liu, J. Electrospinning polyethylene terephthalate/SiO2 nanofiber composite needle felt for enhanced filtration performance. J. Appl. Polym. Sci. 2020, 137, 48282. [Google Scholar] [CrossRef]
- Wertz, J.; Schneiders, I. Filtration media: Advantages of nanofibre coating technology. Filtr. Sep. 2009, 46, 18–20. [Google Scholar] [CrossRef]
- Li, L.; Shang, L.; Li, Y.; Yang, C. Three-layer composite filter media containing electrospun polyimide nanofibers for the removal of fine particles. Fibers Polym. 2017, 18, 749–757. [Google Scholar] [CrossRef]
- Cigdem, A. NANOFIBERS IN FILTRATION. 2019. Available online: https://www.researchgate.net/publication/335025947_NANOFIBERS_IN_FILTRATION (accessed on 29 April 2024).
- Li, D.; Frey, M.W.; Joo, Y.L. Characterization of nanofibrous membranes with capillary flow porometry. J. Membr. Sci. 2006, 286, 104–114. [Google Scholar] [CrossRef]
- Bartholdi, D.; Erlenmaier, I.; Seitz, A.; Maurer, C. Filter media performance and its influence on filtration results-experience, expectations and possibilities in vacuum and pressure filtration. Filtech Conf. 2015, 13, 17. [Google Scholar]
- DuPont de Nemours, I. Test Methods Based on Methodologies from Astm, Iso and Others. 2018. Available online: https://www.dupont.co.za/news/measuring-properties-of-tyvek.html (accessed on 29 April 2024).
- Jena, A.; Gupta, K. Characterization of pore structure of filtration media. Fluid/Part. Sep. J. 2002, 14, 227–241. [Google Scholar]
- Jena, A.; Gupta, K. Liquid extrusion techniques for pore structure evaluation of nonwovens. Int. Nonwovens J. 2003, 3, 45–53. [Google Scholar] [CrossRef]
- Lifshutz, N. On the ‘mean flow’ pore size distribution of microfiber and nanofiber webs. Int. Nonwovens J. 2005, 1, 18–24. [Google Scholar] [CrossRef]
- DIN EN ISO 5084:1996; DIN, ENISO. Textiles–Determination of thickness of textiles and textile products. ISO: Geneva, Switzerland, 1996.
- DIN EN 12127:1997; Textilien—Textile Flächengebilde—Bestimmung der flächenbezogenen Masse unter Verwendung kleiner Proben; Deutsche Fassung. Available online: https://www.dinmedia.de/de/norm/din-en-12127/3569979 (accessed on 26 April 2024).
- DIN EN ISO 9237:1995; DIN, ENISO. Textilien–Bestimmung der Luftdurchlässigkeit von textilen Flächengebilden. ISO: Geneva, Switzerland, 1995.
- ASTM F316-03:2011; Standard Test Methods for Pore Size Characteristics of Membrane Filters by Bubble Point and Mean Flow Pore Test. Available online: https://www.astm.org/f0316-03r19.html (accessed on 26 April 2024).
- ISO 16889:2022; Hydraulic Fluid Power. Available online: https://www.iso.org/standard/77245.html (accessed on 26 April 2024).
- ISO 3968:2017; Hydraulik-Filter-Bestimmung des Druckabfalles in Abhängigkeit von der Durchflusscharakteristik. Available online: https://www.dinmedia.de/de/norm/iso-3968/278003936 (accessed on 26 April 2024).
- Eleftherakis, J.G.; Khalil, A. Multipass Beta Filtration Testing for the 21st Century. Int. Nonwovens J. 2000, 3, 36–40. [Google Scholar] [CrossRef]
- Theron, S.; Zussman, E.; Yarin, A. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, 2017–2030. [Google Scholar] [CrossRef]
- Forouharshad, M.; Saligheh, O.; Arasteh, R.; Farsani, R.E. Manufacture and characterization of poly (butylene terephthalate) nanofibers by electrospinning. J. Macromol. Sci. Part B 2010, 49, 833–842. [Google Scholar] [CrossRef]
- Strain, I.N.; Wu, Q.; Pourrahimi, A.M.; Hedenqvist, M.S.; Olsson, R.T.; Andersson, R.L. Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. J. Mater. Chem. A 2015, 3, 1632–1640. [Google Scholar] [CrossRef]
- Luzio, A.; Canesi, E.V.; Bertarelli, C.; Caironi, M. Electrospun polymer fibers for electronic applications. Materials 2014, 7, 906–947. [Google Scholar] [CrossRef]
- DIN EN ISO 5269-2; Faserstoffe—Laborblattbildung für physikalische Prüfungen—Teil 2: Rapid-Köthen-Verfahren. Available online: https://www.dinmedia.de/de/norm/din-en-iso-5269-2/76461319 (accessed on 29 April 2024).
Physical Properties | Method | Apparatus |
---|---|---|
Thickness | DIN EN ISO 5084:1996 [35] | Thickness gauge without pressure—Mitutoyo Deutschland GmbH, Neuss, Germany |
Basis Weight | DIN EN 12127:1997 [36] | MSA225P-000-DA—Sartorius AG, Göttingen, Germany |
Air Permeability | DIN EN ISO 9237:1995 [37] | FX3300—Textest AG, Schwerzenbach, Switzerland |
Pore Size Distribution | ASTM F316-03:2011 [38] | Capillary Flow Porometer AX 1100—Porous Materials INC., Ithaca, NY, USA |
Samples | Thickness [mm] | Basis Weight [g m−2] | Air Permeability [L m−2 s−1] | Min Pore [µm] | Max Pore [µm] | MFP [µm] |
---|---|---|---|---|---|---|
A | 0.5 ± 0.0 | 75.5 ± 1.8 | 230 ± 7 | 4.5 ± 0.0 | 35.0 ± 0.1 | 14.9 ± 0.3 |
A-2 | 0.5 ± 0.0 | 76.2 ± 3.2 | 230 ± 11 | 4.6 ± 0.1 | 42.0 ± 1.1 | 14.8 ± 0.0 |
A-3 | 0.5 ± 0.0 | 76.7 ± 0.7 | 185 ± 5 | 3.6 ± 0.1 | 40.5 ± 3.2 | 12.7 ± 0.2 |
A-5 | 0.5 ± 0.1 | 72.4 ± 8.8 | 152 ± 1 | 2.9 ± 0.1 | 36.7 ± 7.5 | 10.4 ± 1.4 |
Samples | Thickness [mm] | Basis Weight [g m−2] | Air Permeability [L m−2 s−1] | Min Pore [µm] | Max Pore [µm] | MFP [µm] |
---|---|---|---|---|---|---|
B | 0.5 ± 0.0 | 71.7 ± 1.7 | 230 ± 22 | 5.1 ± 0.2 | 30.3 ± 0.1 | 12.8 ± 0.5 |
B-2 | 0.5 ± 0.0 | 70.5 ± 1.1 | 30 ± 3 | 0.6 ± 0.0 | 22.3 ± 4.8 | 12.3 ± 2.4 |
B-3 | 0.5 ± 0.0 | 69.6 ± 2.6 | 27 ± 9 | 0.6 ± 0.0 | 11.8 ± 0.7 | 6.6 ± 1.0 |
B-5 | 0.6 ± 0.0 | 67.8 ± 2.4 | 20 ± 9 | 0.6 ± 0.0 | 8.4 ± 2.8 | 6.3 ± 1.4 |
Sample | Separation Efficiency [%] for Particle Size [µm] | DHC [g] | DPQ [bar] | ||||||
---|---|---|---|---|---|---|---|---|---|
>4 | >5 | >7 | >12 | 3 bar | 5 bar | 1 L min−1 | 2 L min−1 | 8 L min−1 | |
A | 50.6 | 71.4 | 94.9 | 99.8 | 1.28 | 0.03 | 0.26 | ||
A-2 | 61.5 | 74.7 | 95.6 | 99.8 | 1.48 | 0.03 | 0.24 | ||
A-3 | 73.0 | 85.5 | 97.9 | 99.8 | 1.52 | 0.02 | 0.30 | ||
A-5 | 86.3 | 94.5 | 99.3 | 99.8 | 1.34 | 0.04 | 0.37 | ||
B | 46.8 | 64.4 | 91.4 | 99.6 | 2.40 | 0.02 | 0.18 | ||
B-2 | 97.9 | 98.9 | 99.3 | 99.2 | 0.25 | 0.16 | 4.56 | ||
B-3 | 2 | 3.36 | |||||||
B-5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiter, L.; Leyer, S.; Duchowski, J.K. Enhancement of Filtration Performance Characteristics of Glass Fiber-Based Filter Media, Part 1: Mechanical Modification with Electrospun Nanofibers. Materials 2024, 17, 2209. https://doi.org/10.3390/ma17102209
Weiter L, Leyer S, Duchowski JK. Enhancement of Filtration Performance Characteristics of Glass Fiber-Based Filter Media, Part 1: Mechanical Modification with Electrospun Nanofibers. Materials. 2024; 17(10):2209. https://doi.org/10.3390/ma17102209
Chicago/Turabian StyleWeiter, Laura, Stephan Leyer, and John K. Duchowski. 2024. "Enhancement of Filtration Performance Characteristics of Glass Fiber-Based Filter Media, Part 1: Mechanical Modification with Electrospun Nanofibers" Materials 17, no. 10: 2209. https://doi.org/10.3390/ma17102209
APA StyleWeiter, L., Leyer, S., & Duchowski, J. K. (2024). Enhancement of Filtration Performance Characteristics of Glass Fiber-Based Filter Media, Part 1: Mechanical Modification with Electrospun Nanofibers. Materials, 17(10), 2209. https://doi.org/10.3390/ma17102209