Application of Atmospheric-Pressure Jet Plasma in the Presence of Acrylic Acid for Joining Polymers without Adhesives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Polymer Substrates
2.3. Plasma Treatment at Atmospheric Pressure in the Presence of Acrylic Acid
2.4. Atomic Force Microscopy (AFM)
2.5. X-ray Photoelectron Spectroscopy (XPS)
2.6. Adhesion Tests
2.7. Debonding Experiments
2.8. Metal(II)-Ion Loading
3. Results and Discussion
3.1. Effect of Plasma Modification on Surface Structure and Chemistry
3.2. Adhesion of Joints and Resistance towards Water
3.3. Effect of Adsorbed Metal Ions on the Joints
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdeltwab, E.; Atta, A. Plasma-Induced Modifications on High Density Polyethylene and Polyethylene Terephthalate. ECS J. Solid State Sci. Technol. 2022, 11, 043012. [Google Scholar] [CrossRef]
- Bhat, N.V.; Upadhyay, D.J. Plasma-induced surface modification and adhesion enhancement of polypropylene surface. J. Appl. Polym. Sci. 2002, 86, 925–936. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Tanioka, A.; Miyasaka, K. Preparation of a single bipolar membrane by plasma-induced graft polymerization. J. Membr. Sci. 1989, 43, 165–175. [Google Scholar] [CrossRef]
- Idage, S.B.; Badrinarayanan, S. Surface Modification of Polystyrene Using Nitrogen Plasma. An X-ray Photoelectron Spectroscopy Study. Langmuir 1998, 14, 2780–2785. [Google Scholar] [CrossRef]
- RPaynter, R.W. XPS studies of the modification of polystyrene and polyethyleneterephthalate surfaces by oxygen and nitrogen plasmas. Surf. Interface Anal. 1998, 26, 674–681. [Google Scholar] [CrossRef]
- Wells, R.K.; Badyal, J.P.S.; Drummond, I.W.; Robinson, K.S.; Street, F.J. Plasma oxidation of polystyrene vs. polyethylene. J. Adhes. Sci. Technol. 1993, 7, 1129–1137. [Google Scholar] [CrossRef]
- Egitto, F.D.; Matienzo, L.J. Plasma modification of polymer surfaces for adhesion improvement. IBM J. Res. Dev. 1994, 38, 423–439. [Google Scholar] [CrossRef]
- Vesel, A. Modification of polystyrene with a highly reactive cold oxygen plasma. Surf. Coat. Technol. 2010, 205, 490–497. [Google Scholar] [CrossRef]
- Zhang, S.; Awaja, F.; James, N.; McKenzie, D.R.; Ruys, A.J. Autohesion of plasma treated semi-crystalline PEEK: Comparative study of argon, nitrogen and oxygen treatments. Colloids Surf. A Physicochem. Eng. Asp. 2011, 374, 88–95. [Google Scholar] [CrossRef]
- Zhang, D.; Dougal, S.M.; Yeganeh, M.S. Effects of UV Irradiation and Plasma Treatment on a Polystyrene Surface Studied by IR−Visible Sum Frequency Generation Spectroscopy. Langmuir 2000, 16, 4528–4532. [Google Scholar] [CrossRef]
- Awaja, F. Autohesion of polymers. Polymer 2016, 97, 387–407. [Google Scholar] [CrossRef]
- Zhang, S.; Awaja, F.; James, N.; McKenzie, D.R.; Ruys, A.J. A comparison of the strength of autohesion of plasma treated amorphous and semi-crystalline PEEK films. Polym. Adv. Technol. 2011, 22, 2496–2502. [Google Scholar] [CrossRef]
- Günther, R.; Caseri, W.R.; Brändli, C. Direct bonding and de-bonding on demand of polystyrene and polyamide surfaces, treated with oxygen plasma. J. Appl. Polym. Sci. 2022, 139, 51753. [Google Scholar] [CrossRef]
- Günther, R.; Caseri, W.; Brändli, C. Copper Ions Absorbed on Acrylic-Acid-Grafted Polystyrene Enable Direct Bonding with Tunable Bonding Strength and Debonding on Demand. Polymers 2022, 14, 5142. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S. Cold Atmospheric Plasmas; World Scientific: Singapore, 2019. [Google Scholar] [CrossRef]
- Hegemann, D.; Körner, E.; Guimond, S. Plasma Polymerization of Acrylic Acid Revisited. Plasma Process. Polym. 2009, 6, 246–254. [Google Scholar] [CrossRef]
- Carton, O.; Ben Salem, D.; Bhatt, S.; Pulpytel, J.; Arefi-Khonsari, F. Plasma Polymerization of Acrylic Acid by Atmospheric Pressure Nitrogen Plasma Jet for Biomedical Applications. Plasma Process. Polym. 2012, 9, 984–993. [Google Scholar] [CrossRef]
- Chang, Y.J.; Lin, C.H.; Huang, C. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure. Jpn. J. Appl. Phys. 2015, 55, 01AB05. [Google Scholar] [CrossRef]
- Wolf, R.A. Atmospheric Pressure Plasma for Surface Modification; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Fahmy, A.; Mix, R.; Schönhals, A.; Friedrich, J.F. Structure of Plasma-Deposited Poly(acrylic acid) Films. Plasma Process. Polym. 2011, 8, 147–159. [Google Scholar] [CrossRef]
- Shenton, M.J.; Stevens, G.C. Surface modification of polymer surfaces: Atmospheric plasma versus vacuum plasma treatments. J. Phys. D Appl. Phys. 2001, 34, 2761–2768. [Google Scholar] [CrossRef]
- Plasmatreat GmbH. Plasma processes reduce costs in automotive manufacturing. IST Int. Surf. Technol. 2020, 13, 28–29. [Google Scholar] [CrossRef]
- Kim, C.Y.; Evans, J.; Goring, D.A.I. Corona-induced autohesion of polyethylene. J. Appl. Polym. Sci. 1971, 15, 1365–1375. [Google Scholar] [CrossRef]
- Novak, I.; Chodák, I. Adhesion of poly(propylene) modified by corona discharge. Die Angew. Makromol. Chem. 1998, 260, 47–51. [Google Scholar] [CrossRef]
- Owens, D.K. The mechanism of corona and ultraviolet light-induced self-adhesion of poly(ethylene terephthalate) film. J. Appl. Polym. Sci. 1975, 19, 3315–3326. [Google Scholar] [CrossRef]
- Aziz, G.; de Geyter, N.; Morent, R. Incorporation of Primary Amines via Plasma Technology on Biomaterials. In Advances in Bioengineering; InTech: London, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Yim, J.H.; Rodriguez-Santiago, V.; Williams, A.A.; Gougousi, T.; Pappas, D.D.; Hirvonen, J.K. Atmospheric pressure plasma enhanced chemical vapor deposition of hydrophobic coatings using fluorine-based liquid precursors. Surf. Coat. Technol. 2013, 234, 21–32. [Google Scholar] [CrossRef]
- Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 2–30. [Google Scholar] [CrossRef]
- Ben Said, S.; Arefi-Khonsari, F.; Pulpytel, J. Plasma Polymerization of 3-Aminopropyltrietoxysilane (APTES) by Open-Air Atmospheric Arc Plasma Jet for In-Line Treatments. Plasma Process. Polym. 2016, 13, 1025–1035. [Google Scholar] [CrossRef]
- Kuchakova, I.; Ionita, M.D.; Ionita, E.-R.; Lazea-Stoyanova, A.; Brajnicov, S.; Mitu, B.; Dinescu, G.; De Vrieze, M.; Cvelbar, U.; Zille, A.; et al. Atmospheric Pressure Plasma Deposition of Organosilicon Thin Films by Direct Current and Radio-frequency Plasma Jets. Materials 2020, 13, 1296. [Google Scholar] [CrossRef] [Green Version]
- Asadollahi, S.; Profili, J.; Farzaneh, M.; Stafford, L. Development of Organosilicon-Based Superhydrophobic Coatings through Atmospheric Pressure Plasma Polymerization of HMDSO in Nitrogen Plasma. Materials 2019, 12, 219. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.C.; Mocanu, A.; Tomić, N.Z.; Balos, S.; Stammen, E.; Lundevall, A.; Abrahami, S.T.; Günther, R.; De Kok, J.M.M.; De Freitas, S.T. Review on Adhesives and Surface Treatments for Structural Applications: Recent Developments on Sustainability and Implementation for Metal and Composite Substrates. Materials 2020, 13, 5590. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. J. Chem. Educ. 1992, 70, A25. [Google Scholar]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 1994, 21, 165–176. [Google Scholar] [CrossRef]
- Furushima, Y.; Schick, C.; Toda, A. Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry. Polym. Cryst. 2018, 1, e10005. [Google Scholar] [CrossRef]
- Boiko, Y.M. Statistical strength of a self-bonded incompatible polymer–polymer interface. Polym. Bull. 2020, 78, 6595–6610. [Google Scholar] [CrossRef]
- Boiko, Y.M.; Lyngaae-Jørgensen, J. Bonding at Compatible and Incompatible Amorphous Interfaces of Polystyrene and Poly(Methyl Methacrylate) Below the Glass Transition Temperature. J. Macromol. Sci. Part B 2004, 43, 695–709. [Google Scholar] [CrossRef]
- Beck, U.; Reiners, G.; Lerche, D.; Rietz, U.; Niederwald, H. Quantitative adhesion testing of optical coatings by means of centrifuge technology. Surf. Coat. Technol. 2011, 205 (Suppl. S2), S182–S186. [Google Scholar] [CrossRef]
- Rietz, U. LUMiFrac—A new centrifuge-based approached for testing of bonding and adhesive strength. In Proceedings of the EURADH 2012, Friedrichshafen, Germany, 16–20 September 2012. [Google Scholar]
- Zhou, H.R.; Huang, J.; Chen, M.; Li, Y.; Yuan, M.; Yang, H. Effect of metal ions with reducing properties on hydrogels containing catechol groups. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127657. [Google Scholar] [CrossRef]
- Irving, H.; Williams, R.J.P. 637. The stability of transition-metal complexes. J. Chem. Soc. 1953, 3192–3210. [Google Scholar] [CrossRef]
Material | 1st Sample [s] | 2nd Sample [s] | Average [s] |
---|---|---|---|
PS–PS | 18 | 5 | 11 |
PA 12–PS | 128 | 98 | 113 |
PA 12–PA 12 | >72,000 | 25,400 | - |
Material | 1st Sample [s] | 2nd Sample [s] | Average [s] |
---|---|---|---|
PSPS Cu | 196 | 520 | 358 |
PAPS Cu | 2800 | 26,100 | 14,400 |
PAPA Cu | >61,000 | >61,000 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Günther, R.; Caseri, W.; Brändli, C. Application of Atmospheric-Pressure Jet Plasma in the Presence of Acrylic Acid for Joining Polymers without Adhesives. Materials 2023, 16, 2673. https://doi.org/10.3390/ma16072673
Günther R, Caseri W, Brändli C. Application of Atmospheric-Pressure Jet Plasma in the Presence of Acrylic Acid for Joining Polymers without Adhesives. Materials. 2023; 16(7):2673. https://doi.org/10.3390/ma16072673
Chicago/Turabian StyleGünther, Roman, Walter Caseri, and Christof Brändli. 2023. "Application of Atmospheric-Pressure Jet Plasma in the Presence of Acrylic Acid for Joining Polymers without Adhesives" Materials 16, no. 7: 2673. https://doi.org/10.3390/ma16072673