Surface Modification of CaCO3 by Ultrasound-Assisted Titanate and Silane Coupling Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification of CaCO3
2.3. Performance Test
2.3.1. Oil Absorption Value
2.3.2. Activation Degree
2.3.3. Sedimentation Volume
2.4. Optimization of Modification Process
2.5. Characterization
3. Results and Discussion
3.1. Single-Factor Experiments
3.1.1. Effect of KH550 Combined with Ultrasonic Treatment
3.1.2. Effect of HY311 Dosage without Ultrasonic Treatment
3.1.3. Effect of HY311 Combined with Ultrasonic Treatment
3.2. Response Surface Analysis
3.3. Characterization of CaCO3 Particles
3.3.1. Surface Morphology
3.3.2. Fourier Transform Infrared Spectra
3.3.3. X-ray Diffraction Patterns and Thermogravimetric Analysis
3.3.4. Particle Size Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, Y.Q.; Liu, J.H.; Aymonier, C.; Fermani, S.; Kralj, D.; Falini, G.; Zhou, C.H. Calcium Carbonate: Controlled Synthesis, Surface Functionalization, and Nanostructured Materials. Chem. Soc. Rev. 2022, 51, 7883–7943. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Hu, Y.; Wang, K.; Luo, G. Preparation and In-Situ Surface Modification of CaCO3 Nanoparticles with Calcium Stearate in a Microreaction System. Powder Technol. 2019, 356, 414–422. [Google Scholar] [CrossRef]
- Gao, W.; Ma, X.; Wang, Z.; Zhu, Y. The Influence of Surface Modification on the Structure and Properties of a Calcium Carbonate Filled Poly(Ethylene Terephthalate). Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 230–236. [Google Scholar] [CrossRef]
- Xie, W.; Song, Z.; Liu, Z.; Qian, X. Surface Modification of PCC with Guar Gum Using Organic Titanium Ionic Crosslinking Agent and Its Application as Papermaking Filler. Carbohydr. Polym. 2016, 150, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yu, K.; Zheng, Q.; Xie, J.; Wang, T.J. Thermal Treatment to Improve the Hydrophobicity of Ground CaCO3 Particles Modified with Sodium Stearate. Appl. Surf. Sci. 2018, 436, 832–838. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jo, S.H.; Lim, J.C. Effect of Surface Modification of CaCO3 Nanoparticles by a Silane Coupling Agent Methyltrimethoxysilane on the Stability of Foam and Emulsion. J. Ind. Eng. Chem. 2019, 74, 63–70. [Google Scholar] [CrossRef]
- Ke, S.; Wang, Y.; Pan, Z.; Ning, C.; Zheng, S. Recycling of Polished Tile Waste as a Main Raw Material in Porcelain Tiles. J. Clean. Prod. 2016, 115, 238–244. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, Y.; Zhang, J. Surface Modification of CaCO3 Nanoparticles with Silane Coupling Agent for Improvement of the Interfacial Compactibility with Styrene-Butadine Bubber (SBR) Latx. Chalcogenide Lett. 2013, 10, 131–141. [Google Scholar]
- Gupta, S.; Ramamurthy, P.C.; Madras, G. Covalent Grafting of Polydimethylsiloxane over Surface-Modified Alumina Nanoparticles. Ind. Eng. Chem. Res. 2011, 50, 6585–6593. [Google Scholar] [CrossRef]
- Liu, W.; Xie, Z.; Jia, C. Surface Modification of Ceramic Powders by Titanate Coupling Agent for Injection Molding Using Partially Water Soluble Binder System. J. Eur. Ceram. Soc. 2012, 32, 1001–1006. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, C. Dosage Determination of Aluminate Coupling Agent Modifying Nano-Calcium Carbonate. Adv. Mater. Res. 2012, 347–353, 214–217. [Google Scholar] [CrossRef]
- Hu, Z.; Deng, Y. Superhydrophobic Surface Fabricated from Fatty Acid-Modified Precipitated Calcium Carbonate. Ind. Eng. Chem. Res. 2010, 49, 5625–5630. [Google Scholar] [CrossRef]
- Li, C.-q.; Liang, C.; Chen, Z.-m.; Di, Y.-h.; Zheng, S.-l.; Wei, S.; Sun, Z.-m. Surface Modification of Calcium Carbonate: A Review of Theories, Methods and Applications. J. Cent. South Univ. 2021, 28, 2589–2611. [Google Scholar] [CrossRef]
- Liang, C.; Zheng, S.; Chen, Z.; Wei, S.; Sun, Z.; Li, C. Study on Surface Modification of Ground Calcium Carbonate with Novel Modifier and Its PVC Filling Performance. Powder Technol. 2022, 412, 118028. [Google Scholar] [CrossRef]
- Bi, W.; Goegelein, C.; Hoch, M.; Kirchhoff, J.; Zhao, S. Effect of Silane Coupling Agents on the Rheology, Dynamic and Mechanical Properties of Ethylene Propylene Diene Rubber/Calcium Carbonate Composites. Polymers 2022, 14, 3393. [Google Scholar] [CrossRef]
- Li, B.; Li, S.M.; Liu, J.H.; Yu, M. The Heat Resistance of a Polyurethane Coating Filled with Modified Nano-CaCO3. Appl. Surf. Sci. 2014, 315, 241–246. [Google Scholar] [CrossRef]
- Yan, X.; Xu, G. Influence of Silane Coupling Agent on Corrosion-Resistant Property in Low Infrared Emissivity Cu/Polyurethane Coating. Prog. Org. Coat. 2012, 73, 232–238. [Google Scholar] [CrossRef]
- Al Robaidi, A.; Mousa, A.; Massadeh, S.; Al Rawabdeh, I.; Anagreh, N. The Potential of Silane Coated Calcium Carbonate on Mechanical Properties of Rigid PVC Composites for Pipe Manufacturing. Mater. Sci. Appl. 2011, 02, 481–485. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, C.; Zhang, N.; Chen, C.; Di, X.; Zhang, Y. Surface Modification of Silica Micro-Powder by Titanate Coupling Agent and Its Utilization in PVC Based Composite. Constr. Build. Mater. 2021, 307, 124933. [Google Scholar] [CrossRef]
- Latinwo, G.K.; Ogunleye, O.R.; Agarry, S.E.; Dada, E.O.; Tijani, I.A. Effect of Stearic Acid and Titanate Coupling Agent Modified Calcium Carbonate on Mechanical Properties of Flexible Polyurethane Foam. Int. J. Compos. Mater. 2018, 8, 91–96. [Google Scholar] [CrossRef]
- Cheng, G.; Tong, B.; Tang, Z.; Yu, X.; Wang, H.; Ding, G. Surface Functionalization of Coal Powder with Different Coupling Agents for Potential Applications in Organic Materials. Appl. Surf. Sci. 2014, 313, 954–960. [Google Scholar] [CrossRef]
- Tang, Z.; Cheng, G.; Chen, Y.; Yu, X.; Wang, H. Characteristics Evaluation of Calcium Carbonate Particles Modified by Surface Functionalization. Adv. Powder Technol. 2014, 25, 1618–1623. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, C.; Zhu, L.; Gao, Q.; Wu, L.; Zhang, Q.; Zhao, R. Effect of Alternating Electromagnetic Field and Ultrasonic on CaCO3 Scale Inhibitive Performance of EDTMPS. J. Taiwan Inst. Chem. Eng. 2019, 99, 104–112. [Google Scholar] [CrossRef]
- Huang, Y.D.; Liu, L.; Qiu, J.H.; Shao, L. Influence of Ultrasonic Treatment on the Characteristics of Epoxy Resin and the Interfacial Property of Its Carbon Fiber Composites. Compos. Sci. Technol. 2002, 62, 2153–2159. [Google Scholar] [CrossRef]
- Xiong, J.; Xiong, S.; Guo, Z.; Yang, M.; Chen, J.; Fan, H. Ultrasonic Dispersion of Nano TiC Powders Aided by Tween 80 Addition. Ceram. Int. 2012, 38, 1815–1821. [Google Scholar] [CrossRef]
- Hu, N.; Tang, E.; Chang, D.; Liu, S.; Chu, X.; Xing, X.; Wang, R.; Liu, X. Modification of CaCO3 Nanoparticle by Styrene-Acrylic Polymer Emulsion Spraying and Its Application in Polypropylene Material. Powder Technol. 2021, 394, 83–91. [Google Scholar] [CrossRef]
- Wang, Q.; Peng, J.; Zhou, L.; Tang, T.; Li, S.; Chen, H.; Wang, H.; Zheng, G.; Yang, X.; Qian, L. Influence of Surface Property of CaCO3 Fillers on Apparent Viscosity of Filled Polydimethylsiloxane. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127044. [Google Scholar] [CrossRef]
- Cao, Z.; Daly, M.; Clémence, L.; Geever, L.M.; Major, I.; Higginbotham, C.L.; Devine, D.M. Chemical Surface Modification of Calcium Carbonate Particles with Stearic Acid Using Different Treating Methods. Appl. Surf. Sci. 2016, 378, 320–329. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, H.; Yi, L.; Liu, Y.; Cao, L.; Cao, K.; Liu, Y.; Zhao, W.; Qi, T. Preparation of Ground Calcium Carbonate-Based TiO2 Pigment by a Two-Step Coating Method. Powder Technol. 2018, 325, 568–575. [Google Scholar] [CrossRef]
- Atta, A.M.; Al-Lohedan, H.A.; Ezzat, A.O.; Al-Hussain, S.A. Characterization of Superhydrophobic Epoxy Coatings Embedded by Modified Calcium Carbonate Nanoparticles. Prog. Org. Coat. 2016, 101, 577–586. [Google Scholar] [CrossRef]
- Xu, X.; Song, Y.; Zheng, Q.; Hu, G. Influence of Incorporating CaCO3 into Room Temperature Vulcanized Silicone Sealant on Its Mechanical and Dynamic Rheological Properties. J. Appl. Polym. Sci. 2007, 103, 2027–2035. [Google Scholar] [CrossRef]
- Fadia, P.; Tyagi, S.; Bhagat, S.; Nair, A.; Panchal, P.; Dave, H.; Dang, S.; Singh, S. Calcium Carbonate Nano- and Microparticles: Synthesis Methods and Biological Applications. 3 Biotech 2021, 11, 457. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, H.; Xu, Z.; Xu, Y.; Hu, X.; Wang, H.; Wang, C.; Chen, L. La/Al Engineered Bentonite Composite for Efficient Phosphate Separation from Aqueous Media: Preparation Optimization, Adsorptive Behavior and Mechanism Insight. Sep. Purif. Technol. 2022, 290, 120894. [Google Scholar] [CrossRef]
- Zapata, J.F.; Gomez, M.; Colorado, H.A. Structure-Property Relation and Weibull Analysis of Calcium Aluminate Cement Pastes. Mater. Charact. 2017, 134, 9–17. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Liu, Y.; Muhammad, Y.; Su, Z.; Yang, J. Studies on the Properties of Modified Heavy Calcium Carbonate and SBS Composite Modified Asphalt. Constr. Build. Mater. 2019, 218, 413–423. [Google Scholar] [CrossRef]
- Nam, K.H.; Seo, K.; Seo, J.; Khan, S.B.; Han, H. Ultraviolet-Curable Polyurethane Acrylate Nanocomposite Coatings Based on Surface-Modified Calcium Carbonate. Prog. Org. Coat. 2015, 85, 22–30. [Google Scholar] [CrossRef]
- Pradittham, A.; Charitngam, N.; Puttajan, S.; Atong, D.; Pechyen, C. Surface Modified CaCO3 by Palmitic Acid as Nucleating Agents for Polypropylene Film: Mechanical, Thermal and Physical Properties. Energy Procedia 2014, 56, 264–273. [Google Scholar] [CrossRef]
- Wang, T.; Jia, S.; Xu, Y.; Dong, Y.; Guo, Y.; Huang, Z.; Li, G.; Lian, J. Improving the Corrosion Resistance and Biocompatibility of Magnesium Alloy via Composite Coatings of Calcium Phosphate/Carbonate Induced by Silane. Prog. Org. Coat. 2022, 163, 106653. [Google Scholar] [CrossRef]
- Kong, Q.; Xie, B.; Preis, S.; Hu, Y.; Wu, H.; Wei, C. Adsorption of Cd2+ by an Ion-Imprinted Thiol-Functionalized Polymer in Competition with Heavy Metal Ions and Organic Acids. RSC Adv. 2018, 8, 8950–8960. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Weng, Y. Effects of CaCO3 Surface Modification and Water Spraying on the Weathering Properties of PBAT/CaCO3 Films. Polym. Test. 2021, 102, 107334. [Google Scholar] [CrossRef]
- Shimpi, N.; Mali, A.; Hansora, D.P.; Mishra, S. Synthesis and Surface Modification of Calcium Carbonate Nanoparticles Using Ultrasound Cavitation Technique. Nanosci. Nanoeng. 2015, 3, 8–12. [Google Scholar] [CrossRef]
Run No. | HY311 (%) | KH550 (%) | UST (min) | OAV (g DOP/100 g) | AG (%) | SV (mL/g) | |||
---|---|---|---|---|---|---|---|---|---|
Actual Value | Predicted Value | Actual Value | Predicted Value | Actual Value | Predicted Value | ||||
1 | 0.7 | 0.7 | 10 | 16.63 | 16.73 | 99.18 | 99.23 | 0.6100 | 0.6260 |
2 | 0.7 | 1.1 | 8 | 18.16 | 18.12 | 93.68 | 93.76 | 1 | 0.9911 |
3 | 0.7 | 0.3 | 8 | 18.36 | 18.39 | 98.25 | 98.32 | 1.0500 | 1.0600 |
4 | 0.3 | 0.7 | 8 | 18.50 | 18.52 | 96.19 | 95.99 | 0.9230 | 0.9305 |
5 | 1.1 | 0.7 | 12 | 18.73 | 18.71 | 94.75 | 94.95 | 0.9230 | 0.9155 |
6 | 1.1 | 0.3 | 10 | 20.27 | 20.25 | 97.49 | 97.36 | 0.9100 | 0.9086 |
7 | 0.7 | 1.1 | 12 | 17.75 | 17.72 | 98.45 | 98.38 | 1.1200 | 1.1100 |
8 | 1.1 | 1.1 | 10 | 19.42 | 19.47 | 98.19 | 98.06 | 0.9600 | 0.9786 |
9 | 0.3 | 0.3 | 10 | 20.13 | 20.08 | 97.72 | 97.85 | 0.9800 | 0.9614 |
10 | 0.7 | 0.7 | 10 | 16.68 | 16.73 | 98.50 | 99.23 | 0.6200 | 0.6260 |
11 | 0.7 | 0.7 | 10 | 16.62 | 16.72 | 99.85 | 99.23 | 0.6500 | 0.6260 |
12 | 0.7 | 0.7 | 10 | 16.71 | 16.73 | 99.69 | 99.23 | 0.6500 | 0.6260 |
13 | 0.3 | 1.1 | 10 | 19.35 | 19.37 | 98.33 | 98.45 | 0.9700 | 0.9714 |
14 | 0.7 | 0.3 | 12 | 18.87 | 18.91 | 92.59 | 92.51 | 0.9500 | 0.9589 |
15 | 0.7 | 0.7 | 10 | 16.72 | 16.73 | 98.95 | 99.23 | 0.6000 | 0.6260 |
16 | 1.1 | 0.7 | 8 | 18.50 | 18.49 | 92.92 | 92.97 | 0.9690 | 0.9593 |
17 | 0.3 | 0.7 | 12 | 18.40 | 18.41 | 92.87 | 92.82 | 0.9800 | 0.9897 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, P.; Yang, L.; Xie, Y.; Liu, Y. Surface Modification of CaCO3 by Ultrasound-Assisted Titanate and Silane Coupling Agents. Materials 2023, 16, 3788. https://doi.org/10.3390/ma16103788
Cheng P, Yang L, Xie Y, Liu Y. Surface Modification of CaCO3 by Ultrasound-Assisted Titanate and Silane Coupling Agents. Materials. 2023; 16(10):3788. https://doi.org/10.3390/ma16103788
Chicago/Turabian StyleCheng, Peng, Lei Yang, Yuxiong Xie, and Yu Liu. 2023. "Surface Modification of CaCO3 by Ultrasound-Assisted Titanate and Silane Coupling Agents" Materials 16, no. 10: 3788. https://doi.org/10.3390/ma16103788