Anomalous Properties of Cyclodextrins and Their Complexes in Aqueous Solutions
Abstract
:1. Introduction
2. Cyclodextrins as Complexing Agents
3. The Anomalous Properties of Water
4. The Anomalous Properties of Cyclodextrins
4.1. Aggregation of CDs and CD Complexes
Cyclodextrin | Critical Aggregation Concentration (% w/v) | ||
---|---|---|---|
Permeation | 1H-NMR | DLS | |
αCD | 2.5 | ||
βCD | 0.8 | ||
γCD | 0.9 | ||
HPβCD | 11.8 | 2.1 | 1.8 |
SBEβCD | 1.9 | 2.5 | |
HPγCD | 2.2 | 1.7 |
Type of Aggregate | Approx. Diameter (µm) | Properties | When Observed |
---|---|---|---|
Nanoclusters | <0.5 | Transient clusters that are unstable and dissemble upon agitation and filtration. | Aqueous CD solutions. The nanoclusters consist of free CD and/or drug/CD complexes. |
Nanoparticles | <0.5 | Somewhat stable particles that can tolerate centrifugation and filtration but dissemble upon medium dilution. | Aqueous αCD, βCD, and γCD solutions, frequently at relatively low CD concentrations. The nanoparticles consist of free CD and/or drug/CD complexes. |
Microparticles | 1–50 | Stable particles that can precipitate from aqueous media but disassemble upon medium dilution. | Aqueous αCD, βCD, and γCD solutions, containing poorly soluble drugs and at relatively high CD concentrations. The microparticles consist of drug/CD complexes. |
Macroclusters | >1000 | Very unstable transient clusters that can be visible to the naked eye but dissemble upon agitation and filtration. | Transient clusters (or transient particulate matter) that are sometimes observed in aqueous parenteral solutions containing a relatively high concentration of water-soluble CD derivatives, such as HPβCD. |
4.2. S0 Is Not Always Equal to Sint
4.3. The Value of K Is Method-Dependent
4.4. Water-Soluble Polymers Can Enhance the Solubilizing Efficiency of CDs
4.5. Effects of Ions on βCD Solubilization of Drugs
4.6. In Aqueous Solutions, CDs Frequently Resemble Organic Cosolvents
4.7. CDs as Permeation Enhancers
4.8. CDs Can Stabilize Supersaturated Solutions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loftsson, T.; Duchene, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Uekama, K. Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 2004, 52, 900–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenyvesi, E.; Szente, L. Cyclodextrin in starchy foods. Acta Aliment. 2021, 50, 417–432. [Google Scholar] [CrossRef]
- Puská, I.; Szent, L.; Szőcs, L.; Fenyvesi, É. Recent list of cyclodextrin-containing drug products. Period. Polytech. Chem. Eng. 2023, 67, 11–17. [Google Scholar] [CrossRef]
- Poulson, B.G.; Alsulami, Q.A.; Sharfalddin, A.; El Agammy, E.F.; Mouffouk, F.; Emwas, A.-H.; Jaremko, L.; Jaremko, M. Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications. Polysaccharides 2022, 3, 1–31. [Google Scholar] [CrossRef]
- Villiers, A. Sur la fermentation de la fécule par l’action du ferment butyrique. Compt. Rend. Acad. Sci. 1891, 112, 536–538. [Google Scholar]
- Cramer, F. Einschlussverbindungen; Springer: Berlin/Heidelberg, Germany, 1954. [Google Scholar]
- Crini, G.; Fenyvesi, E.; Szente, L. Outstanding contribution of Professor Jozsef Szejtli to cyclodextrin applications in foods, cosmetics, drugs, chromatography and biotechnology: A review. Environ. Chem. Lett. 2021, 19, 2619–2641. [Google Scholar] [CrossRef]
- Crini, G.; French, A.D.; Kainuma, K.; Jane, J.-L.; Szente, L. Contributions of Dexter French (1918–1981) to cycloamylose/cyclodextrin and starch science. Carbohydr. Polym. 2021, 257, 117620. [Google Scholar] [CrossRef]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Krabicova, I.; Appleton, S.L.; Tannous, M.; Hoti, G.; Caldera, F.; Pedrazzo, A.R.; Cecone, C.; Cavalli, R.; Trotta, F. History of cyclodextrin nanosponges. Polymers 2020, 12, 1122. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Fourmentin, S.; Fenyvesi, E.; Lichtfouse, E.; Torri, G.; Fourmentin, M.; Crini, G. 130 years of cyclodextrin discovery for health, food, agriculture, and the industry: A review. Environ. Chem. Lett. 2021, 19, 2581–2617. [Google Scholar] [CrossRef]
- Stella, V.J.; Rajewski, R.A. Sulfobutylether-β-cyclodextrin. Int. J. Pharm. 2020, 583, 119396. [Google Scholar] [CrossRef] [PubMed]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhiman, P.; Bhatia, M. Pharmaceutical applications of cyclodextrins and their derivatives. J. Incl. Phenom. Macrocycl. Chem. 2020, 98, 171–186. [Google Scholar] [CrossRef]
- Ferreira, L.; Campos, J.; Veiga, F.; Cardoso, C.; Paiva-Santos, A.C. Cyclodextrin-based delivery systems in parenteral formulations: A critical update review. Eur. J. Pharm. Biopharm. 2022, 178, 35–52. [Google Scholar] [CrossRef]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov. Today 2016, 21, 363–368. [Google Scholar] [CrossRef]
- Zhao, Z.-X.; Wang, Z.-L.; Zhang, J.; Zhang, J.-C.; Zhang, Y.-F. Pharmaceutical applications of cyclodextrins. Xiandai Shengwuyixue Jinzhan 2016, 16, 3788–3792. [Google Scholar]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov. Today 2016, 21, 356–362. [Google Scholar] [CrossRef]
- Stella, V.J.; Rao, V.M.; Zannou, E.A.; Zia, V. Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 1999, 36, 3–16. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase Solubility Techniques. Adv. Anal. Chem. Instrum. 1965, 4, 117–212. [Google Scholar]
- Sabadini, E.; Cosgrove, T.; Egidio, F.C. Solubility of cyclomaltooligosaccharides (cyclodextrins) in H2O and D2O: A comparative study. Carbohydr. Res. 2006, 341, 270–274. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Cyclodextrins as functional excipients: Methods to enhance complexation efficiency. J. Pharm. Sci. 2012, 101, 3019–3032. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.D. Chapter 3. Complexation. In Takero Higuchi: A Memorial Tribute; Equilibria and Thermodynamics; Riley, C.M., Rytting, J.H., Hkral, M.A., Eds.; Allen Press: Lawrence, KS, USA, 1991; Volume 3, pp. 175–426. [Google Scholar]
- Brini, E.; Fennell, C.J.; Fernandez-Serra, M.; Hribar-Lee, B.; Luksic, M.; Dill, K.A. How Water’s Properties Are Encoded in Its Molecular Structure and Energies. Chem. Rev. 2017, 117, 12385–12414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laage, D.; Elsaesser, T.; Hynes, J.T. Water Dynamics in the Hydration Shells of Biomolecules. Chem. Rev. 2017, 117, 10694–10725. [Google Scholar] [CrossRef] [PubMed]
- Jarisz, T.; Roy, S.; Hore, D.K. Surface Water as a Mediator and Reporter of Adhesion at Aqueous Interfaces. Acc. Chem. Res. 2018, 51, 2287–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loftsson, T.; Brewster, M.E. Physicochemical properties of water and its effect on drug delivery—A commentary. Int. J. Pharm. 2008, 354, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, M. Water Structure and Science. Available online: http://www1.lsbu.ac.uk/water/ (accessed on 10 February 2023).
- Roy, S.; Hore, D.K. Simulated Structure and Nonlinear Vibrational Spectra of Water Next to Hydrophobic and Hydrophilic Solid Surfaces. J. Phys. Chem. C 2012, 116, 22867–22877. [Google Scholar] [CrossRef]
- Monroe, J.; Barry, M.; DeStefano, A.; Aydogan Gokturk, P.; Jiao, S.; Robinson-Brown, D.; Webber, T.; Crumlin, E.J.; Han, S.; Shell, M.S. Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 523–557. [Google Scholar] [CrossRef] [Green Version]
- Akamatsu, M.; Fujikawa, M.; Nakao, K.; Shimizu, R. In silico Prediction of Human Oral Absorption Based on QSAR Analyses of PAMPA Permeability. Chem. Biodivers. 2009, 6, 1845–1866. [Google Scholar] [CrossRef]
- Korjamo, T.; Heikkinen, A.T.; Moenkkoenen, J. Analysis of unstirred water layer in in vitro permeability experiments. J. Pharm. Sci. 2009, 98, 4469–4479. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Effects on drug permeation through biological membranes. J. Pharm. Pharmacol. 2011, 63, 1119–1135. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T. Drug permeation through biomembranes: Cyclodextrins and the unstirred water layer. Pharmazie 2012, 67, 363–370. [Google Scholar] [PubMed]
- Sandilya, A.A.; Natarajan, U.; Priya, M.H. Molecular View into the Cyclodextrin Cavity: Structure and Hydration. ACS Omega 2020, 5, 25655–25667. [Google Scholar] [CrossRef] [PubMed]
- Soe, H.M.S.H.; Maw, P.D.; Loftsson, T.; Jansook, P. Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery. Pharmaceutics 2022, 15, 1447. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef]
- Coleman, A.W.; Nicolis, I.; Keller, N.; Dalbiez, J.P. Aggregation of cyclodextrins: An explanation of the abnormal solubility of β-cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 1992, 13, 139–143. [Google Scholar] [CrossRef]
- Bottari, C.; Comez, L.; Paolantoni, M.; Corezzi, S.; D’Amico, F.; Gessini, A.; Masciovecchio, C.; Rossi, B. Hydration properties and water structure in aqueous solutions of native and modified cyclodextrins by UV Raman and Brillouin scattering. J. Raman Spectrosc. 2018, 49, 1076–1085. [Google Scholar] [CrossRef]
- Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. [Google Scholar] [CrossRef]
- Malanga, M.; Szemán, J.; Fenyvesi, É.; Puskás, I.; Csabai, K.; Gyémánt, G.; Fenyvesi, F.; Szente, L. “Back to the Future”: A New Look at Hydroxypropyl Beta-Cyclodextrins. J. Pharm. Sci. 2016, 105, 2921–2931. [Google Scholar] [CrossRef] [Green Version]
- Ryzhakov, A.; Thi, T.D.; Stappaerts, J.; Bertoletti, L.; Kimpe, K.; Couto, A.R.S.; Saokham, P.; Van den Mooter, G.; Augustijns, P.; Somsen, G.W.; et al. Self-assembly of cyclodextrins and their complexes in aqueous solutions. J. Pharm. Sci. 2016, 105, 2556–2569. [Google Scholar] [CrossRef] [Green Version]
- Loftsson, T.; Saokham, P.; Sa Couto, A.R. Self-association of cyclodextrins and cyclodextrin complexes in aqueous solutions. Int. J. Pharm. 2019, 560, 228–234. [Google Scholar] [CrossRef] [PubMed]
- He, Y.F.; Fu, P.; Shen, X.H.; Gao, H.C. Cyclodextrin-based aggregates and characterization by microscopy. Micron 2008, 39, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Cova, T.F.G.G.; Cruz, S.M.A.; Valente, A.J.M.; Abreu, P.E.; Marques, J.M.C.; Pais, A.C.C. Aggregation of cyclodextrins: Fundamental issues and applications. In Cyclodextrin Fundamentals, Reactivity and Analysis; Fourmentin, S., Crini, G., Lichtfouse, E., Eds.; Springer Nature Switzerland AG: Basel, Switzerland, 2018; pp. 45–65. [Google Scholar]
- Gonzalez-Gaitano, G.; Rodriguez, P.; Isasi, J.R.; Fuentes, M.; Tardajos, G.; Sanchez, M. The aggregation of cyclodextrins as studied by photon correlation spectroscopy. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 101–105. [Google Scholar] [CrossRef]
- Messner, M.; Kurkov, S.V.; Jansook, P.; Loftsson, T. Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 2010, 387, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, K.; Sawada, M.; Nakagaki, M. Viscosity B-cofficients, apparent molar volumes, and activity coefficients for α- and γ-cyclodextrins in aqueous solutions. Bull. Chem. Soc. Jpn. 1983, 56, 3556–3560. [Google Scholar] [CrossRef] [Green Version]
- Bonini, M.; Rossi, S.; Karlsson, G.; Almgren, M.; Lo Nostro, P.; Baglioni, P. Self-assembly of β-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir 2006, 22, 1478–1484. [Google Scholar] [CrossRef]
- Häusler, O.; Müller-Goymann, C.C. Properties and Structure of Aqueous Solutions of Hydroxypropyl-beta-Cyclodextrin. Starch-Stärke 1993, 45, 183–187. [Google Scholar] [CrossRef]
- Wu, A.; Shen, X.; He, Y. Micrometer-sized rodlike structure formed by the secondary assembly of cyclodextrin nanotube. J. Colloid Interface Sci. 2006, 302, 87–94. [Google Scholar] [CrossRef]
- Loftsson, T.; Stefansson, E. Aqueous eye drops containing drug/cyclodextrin nanoparticles deliver therapeutic drug concentrations to both anterior and posterior segment. Acta Ophthalmol. 2021, 80, 144–150. [Google Scholar] [CrossRef]
- Loftsson, T. Cyclodextrins in Parenteral Formulations. J. Pharm. Sci. 2021, 110, 654–664. [Google Scholar] [CrossRef]
- Loftsson, T.; Magnúsdóttir, A.; Másson, M.; Sigurjónsdóttir, J.F. Self-association and cyclodextrin solubilization of drugs. J. Pharm. Sci. 2002, 91, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Magnusdottir, A.; Másson, M.; Loftsson, T. Self Association and Cyclodextrin Solubilization of NSAIDs. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 213–218. [Google Scholar] [CrossRef]
- Schönbeck, C.; Madsen, T.L.; Peters, G.H.; Holm, R.; Loftsson, T. Soluble 1:1 complexes and insoluble 3:2 complexes—Understanding the phase-solubility diagram of hydrocortisone and γ-cyclodextrin. Int. J. Pharm. 2017, 531, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Kumar, M.; Gupta, S.; Sekharan, T.R.; Tamilvanan, S. Influence of hydrophilic polymers addition into cinnarizine-β-cyclodextrin complexes on drug solubility, drug liberation behaviour and drug permeability. Polym. Bull. 2018, 75, 2987–3009. [Google Scholar] [CrossRef]
- Do, T.T.; Van Hooghten, R.; Van den Mooter, G. A study of the aggregation of cyclodextrins: Determination of the critical aggregation concentration, size of aggregates and thermodynamics using isodesmic and K2–K models. Int. J. Pharm. 2017, 521, 318–326. [Google Scholar] [CrossRef]
- Fulop, Z.; Gref, R.; Loftsson, T. A permeation method for detection of self-aggregation of doxorubicin in aqueous environment. Int. J. Pharm. 2013, 454, 559–561. [Google Scholar] [CrossRef]
- Loftsson, T.; Hreinsdottir, D.; Masson, M. The complexation efficiency. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 545–552. [Google Scholar] [CrossRef]
- Rodrigues, L.N.C.; Tavares, A.C.M.; Ferreira, B.T.; Reis, A.K.C.A.; Katiki, L.M. Inclusion complexes and self-assembled cyclodextrin aggregates for increasing the solubility of benzimidazoles. Braz. J. Pharm. Sci. 2019, 55, e17776/1–e17776/11. [Google Scholar] [CrossRef] [Green Version]
- Loftsson, T.; Hreinsdottir, D.; Masson, M. Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 2005, 302, 18–28. [Google Scholar] [CrossRef]
- Loftsson, T.; Másson, M.; Brewster, M.E. Self-Association of Cyclodextrins and Cyclodextrin Complexes. J. Pharm. Sci. 2004, 93, 1091–1099. [Google Scholar] [CrossRef]
- Másson, M.; Sigurjónsdóttir, J.F.; Jónsdóttir, S.; Loftsson, T. Examination of 19F-NMR as a Tool for Investigation of Drug-Cyclodextrin Complexes. Drug Dev. Ind. Pharm. 2003, 29, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Uekama, K.; Hirayama, F.; Nasu, S.; Matsuo, N.; Irie, T. Determination of the stability constants for inclusion complexes of cyclodextrins with various drug molecules by high performance liquid chromatography. Chem. Pharm. Bull. 1978, 26, 3477–3484. [Google Scholar] [CrossRef] [Green Version]
- Ugwu, S.O.; Alcala, M.J.; Bhardwaj, R.; Blanchard, J. Characterization of the complexation of diflunisal with hydroxypropyl-β-cyclodextrin. J. Pharm. Biomed. Anal. 1999, 19, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Sideris, E.E.; Valsami, G.N.; Koupparis, M.A.; Macheras, P.E. Studies on the interaction of diflunisal ion with cyclodextrins using ion-selective electrode potentiometry. Eur. J. Pharm. Sci. 1999, 7, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, N.M.; Perez-Aguilar, J.M.; Gonzalez-Coronel, V.J.; Soriano Moro, J.G.; Sanchez-Gaytan, B.L. Polymers as Versatile Players in the Stabilization, Capping, and Design of Inorganic Nanostructures. ACS Omega 2021, 6, 35196–35203. [Google Scholar] [CrossRef]
- Shvets, A. Theory of Colloidal Stabilization by Unattached Polymers; Cornell University Library: Ithaca, NY, USA, 2020. [Google Scholar]
- Antunes, F.E.; Marques, E.F.; Miguel, M.G.; Lindman, B. Polymer–vesicle association. Adv. Colloid Interface Sci. 2009, 147–148, 18–35. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, T.; Woo, S.H. Enhanced solubilization of phenanthrene in Triton X-100 solutions by the addition of small amounts of chitosan. Chem. Eng. J. 2010, 163, 450–453. [Google Scholar] [CrossRef]
- Attwood, D.; Florence, A.T. Surfactant Systems. Their Chemistry, Pharmacy and Biology; Springer: Dordrecht, The Netherlands, 1983; p. 794. [Google Scholar]
- Goddard, E.D.; Ananthapadmanabhan, K.P. Interactions of Surfactants with Polymers and Proteins; CRC: Boca Raton, FL, USA, 1992; p. 427. [Google Scholar]
- Li, J.; Gao, H.; Ye, Z.; Deng, J.; Ouyang, D. In silico formulation prediction of drug/cyclodextrin/polymer ternary complexes by machine learning and molecular modeling techniques. Carbohydr. Polym. 2022, 275, 118712. [Google Scholar] [CrossRef]
- Chadha, R.; Bala, M.; Goyal, P.; Chadha, K.; Karan, M. Role of Polymers in Ternary Drug Cyclodextrin Complexes; Scrivener Publishing LLC: Beverly, MA, USA, 2015; pp. 413–438. [Google Scholar]
- Loftsson, T.; Fridriksdottir, H.; Sigurdardottir, A.M.; Ueda, H. The effect of water-soluble polymers on drug-cyclodextrin complexation. Int. J. Pharm. 1994, 110, 169–177. [Google Scholar] [CrossRef]
- Loftsson, T.; Guðmundsdóttir, T.K.; Friðriksdóttir, H. The influence of water-soluble polymers and pH on hydroxylpropyl-β-cyclodextrin complexation of drugs. Drug Dev. Ind. Pharm. 1996, 22, 401–405. [Google Scholar] [CrossRef]
- Suvarna, P.; Chaudhari, P.; Lewis, S.A. Cyclodextrin-Based Supramolecular Ternary Complexes: Emerging Role of Ternary Agents on Drug Solubility, Stability, and Bioavailability. Crit. Rev. Ther. Drug Carr. Syst. 2022, 39, 1–50. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y. CD-based polymeric rotaxanes. Chem. Rev. 2009, 109, 5974–6023. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Friðriksdóttir, H. The effect of water-soluble polymers on the aqueous solubility and complexing abilities of β-cyclodextrin. Int. J. Pharm. 1998, 163, 115–121. [Google Scholar] [CrossRef]
- Fenyvesi, E.; Vikmon, M.; Szeman, J.; Redenti, E.; Delcanale, M.; Ventura, P.; Szejtli, J. Interaction of hydroxy acids with beta-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 1999, 33, 339–344. [Google Scholar] [CrossRef]
- Redenti, E.; Szente, L.; Szejtli, J. Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J. Pharm. Sci. 2000, 89, 1–8. [Google Scholar] [CrossRef]
- Loftsson, T.; Matthiasson, K.; Masson, M. The effects of organic salts on the cyclodextrin solubilization of drugs. Int. J. Pharm. 2003, 262, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Brewster, M.E. Complex formation. In Remington, the Science and Practice of Pharmacy, 22nd ed.; Allen, L.V., Ed.; Pharmaceutical Press: London, UK, 2013; Volume 1, pp. 681–692. [Google Scholar]
- Sripetch, S.; Prajapati, M.; Loftsson, T. Cyclodextrins and Drug Membrane Permeation: Thermodynamic Considerations. J. Pharm. Sci. 2022, 111, 2571–2580. [Google Scholar] [CrossRef]
- Djajic, N.; Otasevic, B.; Malenovic, A.; Zecevic, M.; Holzgrabe, U.; Protic, A. Corona Charged Aerosol Detector in studying retention and β-cyclodextrin complex stability using RP-HPLC. J. Pharm. Biomed. Anal. 2021, 193, 113711. [Google Scholar] [CrossRef]
- Loftsson, T.; Moya-Ortega, M.D.; Alvarez-Lorenzo, C.; Concheiro, A. Pharmacokinetics of cyclodextrins and drugs after oral and parenteral administration of drug/cyclodextrin complexes. J. Pharm. Pharmacol. 2016, 68, 544–555. [Google Scholar] [CrossRef]
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef]
- Miyazaki, K.; Kishimoto, H.; Muratani, M.; Kobayashi, H.; Shirasaka, Y.; Inoue, K. Mucins are Involved in the Intestinal Permeation of Lipophilic Drugs in the Proximal Region of Rat Small Intestine. Pharm. Res. 2019, 36, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.V.; Sjövall, H.; Hansson, G.C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 352–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewster, M.E.; Noppe, M.; Peeters, J.; Loftsson, T. Effect of the unstirred water layer on permeability enhancement by hydrophilic cyclodextrins. Int. J. Pharm. 2007, 342, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Vogensen, S.B.; Brewster, M.E.; Konradsdottir, F. Effects of cyclodextrins on drug delivery through biological membranes. J. Pharm. Sci. 2007, 96, 2532–2546. [Google Scholar] [CrossRef]
- Stappaerts, J.; Berben, P.; Cevik, I.; Augustijns, P. The effect of 2-hydroxypropyl-β-cyclodextrin on the intestinal permeation through mucus. Eur. J. Pharm. Sci. 2018, 114, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Aihara, R.; Messerschmid, R.; Mizoguchi, M.; Wada, K.; Minami, K.; Higashino, H.; Takagi, T.; Kataoka, M.; Yamashita, S. In vitro-in vivo correlation in the effect of cyclodextrin on oral absorption of poorly soluble drugs. Int. J. Pharm. 2021, 600, 120494. [Google Scholar] [CrossRef]
- Tzanova, M.M.; Moretti, F.; Grassi, G.; Stein, P.C.; Hiorth, M.; Abrami, M.; Grassi, M.; di Cagno, M.P. Modelling drug diffusion through unstirred water layers allows real-time quantification of free/loaded drug fractions and release kinetics from colloidal-based formulations. Eur. J. Pharm. Biopharm. 2022, 178, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Truzzi, E.; Rustichelli, C.; de Oliveira Junior, E.R.; Ferraro, L.; Maretti, E.; Graziani, D.; Botti, G.; Beggiato, S.; Iannuccelli, V.; Lima, E.M.; et al. Nasal biocompatible powder of Geraniol oil complexed with cyclodextrins for neurodegenerative diseases: Physicochemical characterization and in vivo evidences of nose to brain delivery. J. Control. Release 2021, 335, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Dai, W.-G. Drug precipitation inhibitors in supersaturable formulations. Int. J. Pharm. 2013, 453, 36–43. [Google Scholar] [CrossRef]
- Alvani, A.; Shayanfar, A. Solution Stability of Pharmaceutical Cocrystals. Cryst. Growth Des. 2022, 22, 6323–6337. [Google Scholar] [CrossRef]
- Price, D.J.; Ditzinger, F.; Koehl, N.J.; Jankovic, S.; Tsakiridou, G.; Nair, A.; Holm, R.; Kuentz, M.; Dressman, J.B.; Saal, C. Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations—A PEARRL review. J. Pharm. Pharmacol. 2018, 71, 483–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dokoumetzidis, A.; Macheras, P. A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. Int. J. Pharm. 2006, 321, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Anzai, K.; Mizoguchi, J.-i.; Yanagi, T.; Hirayama, F.; Arima, H.; Uekama, K. Improvement of Dissolution Properties of a New Helicobacter pylori Eradicating Agent (TG44) by Inclusion Complexation with β-Cyclodextrin. Chem. Pharm. Bull. 2007, 55, 1466–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loftsson, T.; Sigurðsson, H.H.; Másson, M.; Schipper, N. Preparation of solid drug/cyclodextrin complexes of acidic and basic drugs. Pharmazie 2004, 59, 25–29. [Google Scholar] [PubMed]
- Torres-Labandeira, J.J.; Davignon, P.; Pitha, J. Oversaturated Solutions of Drug in Hydroxypropylcyclodextrins: Parenteral Preparation of Pancratistatin. J. Pharm. Sci. 1991, 80, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Augustijns, P.; Brewster, M.E. Supersaturating Drug Delivery Systems: Fast is Not Necessarily Good Enough. J. Pharm. Sci. 2012, 101, 7–9. [Google Scholar] [CrossRef]
- Wada-Hirai, A.; Shimizu, S.; Ichii, R.; Tsunoda, C.; Hiroshige, R.; Fujita, M.; Li, Y.-P.; Shimada, Y.; Otsuka, Y.; Goto, S. Stabilization of the Metastable α–Form of Indomethacin Induced by the Addition of 2-Hydroxypropyl-β-Cyclodextrin, Causing Supersaturation (Spring) and Its Sustaining Deployment (Parachute). J. Pharm. Sci. 2021, 110, 3623–3630. [Google Scholar] [CrossRef]
- Brewster, M.E.; Vandecruys, R.; Peeters, J.; Neeskens, P.; Verreck, G.; Loftsson, T. Comparative interaction of 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin with itraconazole: Phase-solubility behavior and stabilization of supersaturated drug solutions. Eur. J. Pharm. Sci. 2008, 34, 94–103. [Google Scholar] [CrossRef]
Cyclodextrin | Abbrev. | Pharmacopoeia Name | Molecular Weight b | Solubility in Water (mg/mL) e | LogP f | H-Acceptors g | H-Donors g |
---|---|---|---|---|---|---|---|
α-Cyclodextrin | αCD | Alfadex | 973 | 129.5 | −13 | 30 | 18 |
β-Cyclodextrin | βCD | Betadex | 1135 | 18.4 | −14 | 35 | 21 |
2-Hydroxypropyl-βCD | HPβCD | Hydroxypropylbetadex | 1400 c | >600 | −11 | 39 c | 21 c |
Sulfobutyl ether βCD sodium salt | SBEβCD | Sulfobutylbetadex sodium | 2163 d | >500 | <−10 | 53 d | 15 d |
γ-Cyclodextrin | γCD | Gammadex a | 1297 | 249.2 | −17 | 40 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loftsson, T.; Sigurdsson, H.H.; Jansook, P. Anomalous Properties of Cyclodextrins and Their Complexes in Aqueous Solutions. Materials 2023, 16, 2223. https://doi.org/10.3390/ma16062223
Loftsson T, Sigurdsson HH, Jansook P. Anomalous Properties of Cyclodextrins and Their Complexes in Aqueous Solutions. Materials. 2023; 16(6):2223. https://doi.org/10.3390/ma16062223
Chicago/Turabian StyleLoftsson, Thorsteinn, Hákon Hrafn Sigurdsson, and Phatsawee Jansook. 2023. "Anomalous Properties of Cyclodextrins and Their Complexes in Aqueous Solutions" Materials 16, no. 6: 2223. https://doi.org/10.3390/ma16062223