Physical Properties and Antimicrobial Release Ability of Gentamicin-Loaded Apatite Cement/α-TCP Composites: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Gentamicin-Loaded AC/α-TCP Composites
2.2. Morphological Observation by Scanning Electron Microscopy
2.3. Measurement of the Mechanical Strength
2.4. Powder X-ray Diffraction Analysis
2.5. Gentamicin Release Test
2.6. Statistical Analysis
3. Results
3.1. SEM Observation and Setting Time of the Gentamicin-Loaded AC/α-TCP Composites
3.2. Mechanical Strength of the Gentamicin-Loaded AC/α-TCP Composites
3.3. Powder X-ray Diffraction Analysis of the Gentamicin-Loaded AC/α-TCP Composites
3.4. Antimicrobial Release of the Gentamicin-Loaded AC/α-TCP Composites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baltensperger, M.; Eyrich, G. Osteomyelitis of the Jaws; Springer: Berlin/Heidelberg, Germany, 2008; pp. 4–6. [Google Scholar]
- Jha, Y.; Chaudhary, K. Diagnosis and Treatment Modalities for Osteomyelitis. Cureus 2022, 14, e30713. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.E.; Chow, L.C. A new calcium phosphate, water-setting cement. In Cements Research Progress 1986; Brown, P.W., Ed.; American Ceramic Society: Westerville, OH, USA, 1987; pp. 351–379. [Google Scholar]
- Takechi, M.; Ninomiya, Y.; Ohta, K.; Tada, M.; Sasaki, K.; Rahman, M.Z.; Ohta, A.; Tsuru, K.; Ishikawa, K. Effects of Apatite Cement Containing Atelocollagen on Attachment to and Proliferation and Differentiation of MC3T3-E1 Osteoblastic Cells. Materials 2016, 9, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tronco, M.C.; Cassel, J.B.; Dos Santos, L.A. α-TCP-based calcium phosphate cements: A critical review. Acta Biomater. 2022, 151, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Baras, B.H.; Melo, M.A.S.; Thumbigere-Math, V.; Tay, F.R.; Fouad, A.F.; Oates, T.W.; Weir, M.D.; Cheng, L.; Xu, H.H.K. Novel Bioactive and Therapeutic Root Canal Sealers with Antibacterial and Remineralization Properties. Materials 2020, 13, 1096. [Google Scholar] [CrossRef] [Green Version]
- Costantino, P.D.; Friedman, C.D.; Jones, K.; Chow, L.C.; Pelzer, H.J.; Sisson, G.A., Sr. Hydroxyapatite cement. I. Basic chemistry and histologic properties. Arch. Otolaryngol. Head Neck Surg. 1991, 117, 379–384. [Google Scholar] [CrossRef]
- Friedman, C.D.; Costantino, P.D.; Jones, K.; Chow, L.C.; Pelzer, H.J.; Sisson, G.A., Sr. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch. Otolaryngol. Head Neck Surg. 1991, 117, 385–389. [Google Scholar] [CrossRef]
- Sugawara, A.; Nishiyama, M.; Kusama, K.; Moro, I.; Nishimura, S.; Kudo, I.; Chow, L.C.; Takagi, S. Histopathological reactions of calcium phosphate cement. Dent. Mater. J. 1992, 11, 11–16. [Google Scholar] [CrossRef]
- Costantino, P.D.; Friedman, C.D.; Jones, K.; Chow, L.C.; Sisson, G.A. Experimental hydroxyapatite cement cranioplasty. Plast. Reconstr. Surg. 1992, 90, 174–185. [Google Scholar] [CrossRef]
- Shindo, M.L.; Costantino, P.D.; Friedman, C.D.; Chow, L.C. Facial skeletal augmentation using hydroxyapatite cement. Arch. Otolaryngol. Head Neck Surg. 1993, 119, 185–190. [Google Scholar] [CrossRef]
- Fujikawa, K.; Sugawara, A.; Murai, S.; Nishiyama, M.; Takagi, S.; Chow, L.C. Histopathological reaction of calcium phosphate cement in periodontal bone defect. Dent. Mater. J. 1995, 14, 45–57. [Google Scholar] [CrossRef]
- Ishikawa, K.; Takagi, S.; Chow, L.C.; Ishikawa, Y. Properties and mechanisms of fast-setting calcium phosphate cement. J. Mater. Sci. Mater. Med. 1995, 6, 528–533. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Ishikawa, K.; Fukao, H.; Sawada, M.; Nagayama, M.; Kon, M.; Asaoka, K. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 1995, 16, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, Y.; Wu, P.; Chen, B. Update on new medicinal applications of gentamicin: Evidence-based review. J. Formos. Med. Assoc. 2014, 113, 72–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.C.; Su, C.Y.; Nien, W.H.; Huang, T.T.; Huang, C.H.; Lu, Y.C.; Chen, Y.J.; Huang, G.C.; Fang, H.W. Influence of Antibiotic-Loaded Acrylic Bone Cement Composition on Drug Release Behavior and Mechanism. Polymers 2021, 13, 2240. [Google Scholar] [CrossRef] [PubMed]
- Omori, T.; Takahashi, K.; Terai, Y.; Ota, Y.; Usui, M.; Watanabe, T. Treatment of Bone and Joint Infection Using Hydroxyapatite Impregnated with Antibiotics. J. Chugoku-Shikoku J. C-S. Orthop. Assoc. 2001, 13, 31–34. (In Japanese) [Google Scholar]
- Fraga, K.; Maireles, M.; Jordan, M.; Soldevila, L.; Murillo, O. Mycobacterium fortuitum osteomyelitis of the cuboid bone treated with CERAMENT G and V: A case report. J. Bone Jt. Infect. 2022, 7, 163–167. [Google Scholar] [CrossRef]
- Ayukawa, Y.; Suzuki, Y.; Tsuru, K.; Koyano, K.; Ishikawa, K. Histological Comparison in Rats between Carbonate Apatite Fabricated from Gypsum and Sintered Hydroxyapatite on Bone Remodeling. Biomed. Res. Int. 2015, 2015, 579541. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, K.; Miyamoto, Y.; Tsuchiya, A.; Hayashi, K.; Tsuru, K.; Ohe, G. Physical and Histological Comparison of Hydroxyapatite, Carbonate Apatite, and β-Tricalcium Phosphate Bone Substitutes. Materials 2018, 11, 1993. [Google Scholar] [CrossRef] [Green Version]
- Yuasa, T.; Miyamoto, Y.; Ishikawa, K.; Takechi, M.; Momota, Y.; Tatehara, S.; Nagayama, M. Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials 2004, 25, 1159–1166. [Google Scholar] [CrossRef]
- Takeyama, H.; Maruta, M.; Sato, T.; Kajimoto, N.; Fujii, E.; Matsuura, T.; Tsuru, K. Fabrication of bioresorbable hydroxyapatite bone grafts through the setting reaction of calcium phosphate cement. Dent. Mater. J. 2022, 41, 882–888. [Google Scholar] [CrossRef]
- Nakagawa, A.; Matsuya, S.; Takeuchi, A.; Ishikawa, K. Comparison of the effects of added alpha- and beta- tricalcium phosphate on the basic properties of apatite cement. Dent. Mater. J. 2007, 26, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Shinto, Y.; Uchida, A.; Korkusuz, F.; Araki, N.; Ono, K. Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J. Bone Jt. Surg. Br. 1992, 74, 600–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Tukeoka, T.; Tsuneizumi, Y.; Kim, T.; Yamanaka, H.; Nakamura, H.; Kitada, K.; Umeda, T.; Takeuchi, H.; Moriya, H. Mechanical Strength and in vitro Antibiotic Release Profile of Antibiotics-loaded Phosphate Bone Paste. Jpn. Clin. Orthop. Assoc. 2004, 39, 309–314. (In Japanese) [Google Scholar]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [Green Version]
- Baran, A.; Baran, M.F.; Keskin, C.; Irtegun-Kandemir, S.; Valiyeva, M.; Mehraliyeva, S.; Khalilov, R.; Eftekhari, A. Ecofriendly/Rapid Synthesis of Silver Nanoparticles Using Extract of Waste Parts of Artichoke (Cynara scolymus L.) and Evaluation of their Cytotoxic and Antibacterial Activities. J. Nanomater. 2021, 2021, 2270472. [Google Scholar] [CrossRef]
- Baran, A.; Keskin, C.; Baran, M.F.; Huseynova, I.; Khalilov, R.; Eftekhari, A.; Irtegun-Kandemir, S.; Kavak, D.E. Ecofriendly Synthesis of Silver Nanoparticles Using Ananas comosus Fruit Peels: Anticancer and Antimicrobial Activities. Bioinorg. Chem. Appl. 2021, 2021, 2058149. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics 2022, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.X.; Siller-Jackson, A.J.; Burra, S. Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Front. Biosci. 2007, 12, 1450–1462. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Singer, M. Do antibiotics cause mitochondrial and immune cell dysfunction? A literature review. J. Antimicrob. Chemother. 2022, 77, 1218–1227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, K.; Ninomiya, Y.; Takechi, M.; Tsuru, K.; Ishikawa, K.; Shigeishi, H.; Ohta, K.; Aikawa, T. Physical Properties and Antimicrobial Release Ability of Gentamicin-Loaded Apatite Cement/α-TCP Composites: An In Vitro Study. Materials 2023, 16, 995. https://doi.org/10.3390/ma16030995
Sasaki K, Ninomiya Y, Takechi M, Tsuru K, Ishikawa K, Shigeishi H, Ohta K, Aikawa T. Physical Properties and Antimicrobial Release Ability of Gentamicin-Loaded Apatite Cement/α-TCP Composites: An In Vitro Study. Materials. 2023; 16(3):995. https://doi.org/10.3390/ma16030995
Chicago/Turabian StyleSasaki, Kazuki, Yoshiaki Ninomiya, Masaaki Takechi, Kanji Tsuru, Kunio Ishikawa, Hideo Shigeishi, Kouji Ohta, and Tomonao Aikawa. 2023. "Physical Properties and Antimicrobial Release Ability of Gentamicin-Loaded Apatite Cement/α-TCP Composites: An In Vitro Study" Materials 16, no. 3: 995. https://doi.org/10.3390/ma16030995
APA StyleSasaki, K., Ninomiya, Y., Takechi, M., Tsuru, K., Ishikawa, K., Shigeishi, H., Ohta, K., & Aikawa, T. (2023). Physical Properties and Antimicrobial Release Ability of Gentamicin-Loaded Apatite Cement/α-TCP Composites: An In Vitro Study. Materials, 16(3), 995. https://doi.org/10.3390/ma16030995