Bio-Based Binder Development for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Binder Function and Mechanisms
3. Bio-Based Binder Development for Anodes in LIBs
4. Bio-Based Binder Development for Cathodes
5. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Wei, Y.; Zhong, Y.; Yang, Y.; Cheng, H.; Yuan, L.; Xu, H.; Huang, Y. Building Practical High-Voltage Cathode Materials for Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2200912. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “Beyond Li-Ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Iijima, T. Power Sources; Collins, D.H., Ed.; Academic Press: New York, NY, USA, 1975; Volume 5, p. 713. [Google Scholar]
- Nakajima, K. Conversation too Hot to Handle. Mainichi Daily News, 1989; 1. Available online: http://mainichi.jp/english/(accessed on 7 August 2023).
- Yazami, R.; Touzain, P. A Reversible Graphite-Lithium Negative Electrode for Electrochemical Generators. J. Power Sources 1983, 9, 365–371. [Google Scholar] [CrossRef]
- Ozawa, K. Lithium-Ion Rechargeable Batteries with LiCoO2 and Carbon Electrodes: The LiCoO2/C System. Solid State Ion. 1994, 69, 212–221. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, J.; Cui, G. Small Things Make Big Deal: Powerful Binders of Lithium Batteries and Post-Lithium Batteries. Energy Storage Mater. 2019, 20, 146–175. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S.; Malode, S.J.; Shetti, N.P.; Shukla, S.S.; Nadagouda, M.N.; Aminabhavi, T.M. Electrode Materials for Lithium-Ion Batteries. Mater. Sci. Energy Technol. 2018, 1, 182–187. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, N.; Cui, Y. Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries. Nat. Energy 2016, 1, 16071. [Google Scholar] [CrossRef]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Anode Materials for Lithium-Ion Batteries: A Review. Appl. Surf. Sci. Adv. 2022, 9, 100233. [Google Scholar] [CrossRef]
- Lingappan, N.; Kong, L.; Pecht, M. The Significance of Aqueous Binders in Lithium-Ion Batteries. Renew. Sustain. Energy Rev. 2021, 147, 111227. [Google Scholar] [CrossRef]
- Li, J.-T.; Wu, Z.-Y.; Lu, Y.-Q.; Zhou, Y.; Huang, Q.-S.; Huang, L.; Sun, S.-G. Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density. Adv. Energy Mater. 2017, 7, 1701185. [Google Scholar] [CrossRef]
- Komaba, S.; Yabuuchi, N.; Ozeki, T.; Okushi, K.; Yui, H.; Konno, K.; Katayama, Y.; Miura, T. Functional Binders for Reversible Lithium Intercalation into Graphite in Propylene Carbonate and Ionic Liquid Media. J. Power Sources 2010, 195, 6069–6074. [Google Scholar] [CrossRef]
- Nakazawa, T.; Ikoma, A.; Kido, R.; Ueno, K.; Dokko, K.; Watanabe, M. Effects of Compatibility of Polymer Binders with Solvate Ionic Liquid Electrolytes on Discharge and Charge Reactions of Lithium-Sulfur Batteries. J. Power Sources 2016, 307, 746–752. [Google Scholar] [CrossRef] [Green Version]
- Tsao, C.-H.; Hsu, C.-H.; Kuo, P.-L. Ionic Conducting and Surface Active Binder of Poly (Ethylene Oxide)-Block-Poly(Acrylonitrile) for High Power Lithium-Ion Battery. Electrochim. Acta 2016, 196, 41–47. [Google Scholar] [CrossRef]
- Komaba, S.; Okushi, K.; Ozeki, T.; Yui, H.; Katayama, Y.; Miura, T.; Saito, T.; Groult, H. Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries. Electrochem. Solid-State Lett. 2009, 12, A107. [Google Scholar] [CrossRef]
- Pieczonka, N.P.W.; Borgel, V.; Ziv, B.; Leifer, N.; Dargel, V.; Aurbach, D.; Kim, J.-H.; Liu, Z.; Huang, X.; Krachkovskiy, S.A.; et al. Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-Voltage Li-Ion Batteries. Adv. Energy Mater. 2015, 5, 1501008. [Google Scholar] [CrossRef]
- Wang, H.; Sencadas, V.; Gao, G.; Gao, H.; Du, A.; Liu, H.; Guo, Z. Strong Affinity of Polysulfide Intermediates to Multi-Functional Binder for Practical Application in Lithium–Sulfur Batteries. Nano Energy 2016, 26, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zhao, Y.; Tan, R.; Tian, L.-L.; Liu, Y.; Chen, H.; Pan, F. Novel Conductive Binder for High-Performance Silicon Anodes in Lithium Ion Batteries. Nano Energy 2017, 36, 206–212. [Google Scholar] [CrossRef]
- Drofenik, J.; Gaberscek, M.; Dominko, R.; Poulsen, F.W.; Mogensen, M.; Pejovnik, S.; Jamnik, J. Cellulose as a Binding Material in Graphitic Anodes for Li Ion Batteries: A Performance and Degradation Study. Electrochim. Acta 2003, 48, 883–889. [Google Scholar] [CrossRef]
- Luo, L.; Xu, Y.; Zhang, H.; Han, X.; Dong, H.; Xu, X.; Chen, C.; Zhang, Y.; Lin, J. Comprehensive Understanding of High Polar Polyacrylonitrile as an Effective Binder for Li-Ion Battery Nano-Si Anodes. ACS Appl. Mater. Interfaces 2016, 8, 8154–8161. [Google Scholar] [CrossRef]
- Munao, D.; van Erven, J.W.M.; Valvo, M.; Garcia-Tamayo, E.; Kelder, E.M. Role of the Binder on the Failure Mechanism of Si Nano-Composite Electrodes for Li-Ion Batteries. J. Power Sources 2011, 196, 6695–6702. [Google Scholar] [CrossRef]
- Chen, H.; Ling, M.; Hencz, L.; Ling, H.Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem. Rev. 2018, 118, 8936–8982. [Google Scholar] [CrossRef]
- Zou, F.; Manthiram, A. A Review of the Design of Advanced Binders for High-Performance Batteries. Adv. Energy Mater. 2020, 10, 2002508. [Google Scholar] [CrossRef]
- Cholewinski, A.; Si, P.; Uceda, M.; Pope, M.; Zhao, B. Polymer Binders: Characterization and Development toward Aqueous Electrode Fabrication for Sustainability. Polymers 2021, 13, 631. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Choi, J.W.; Coskun, A. The Emerging Era of Supramolecular Polymeric Binders in Silicon Anodes. Chem. Soc. Rev. 2018, 47, 2145–2164. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Du, L.; Wu, W.; Xu, H.; Zhang, G.; Li, S.; Wang, C.; Lu, Z.; Deng, Y. Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 12621–12629. [Google Scholar] [CrossRef]
- Wu, H.; Cui, Y. Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries. Nano Today 2012, 7, 414–429. [Google Scholar] [CrossRef]
- Ling, M.; Xu, Y.; Zhao, H.; Gu, X.; Qiu, J.; Li, S.; Wu, M.; Song, X.; Yan, C.; Liu, G.; et al. Dual-Functional Gum Arabic Binder for Silicon Anodes in Lithium Ion Batteries. Nano Energy 2015, 12, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Jabbour, L.; Bongiovanni, R.; Chaussy, D.; Gerbaldi, C.; Beneventi, D. Cellulose-Based Li-Ion Batteries: A Review. Cellulose 2013, 20, 1523–1545. [Google Scholar] [CrossRef]
- Liedel, C. Sustainable Battery Materials from Biomass. ChemSusChem 2020, 13, 2110–2141. [Google Scholar] [CrossRef]
- Wang, X.; Yao, C.; Wang, F.; Li, Z. Cellulose-Based Nanomaterials for Energy Applications. Small 2017, 13, 1702240. [Google Scholar] [CrossRef]
- Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Novák, P. Study of Styrene Butadiene Rubber and Sodium Methyl Cellulose as Binder for Negative Electrodes in Lithium-Ion Batteries. J. Power Sources 2006, 161, 617–622. [Google Scholar] [CrossRef]
- Chang, W.J.; Lee, G.H.; Cheon, Y.J.; Kim, J.T.; Lee, S.I.; Kim, J.; Kim, M.; Park, W.I.; Lee, Y.J. Direct Observation of Carboxymethyl Cellulose and Styrene–Butadiene Rubber Binder Distribution in Practical Graphite Anodes for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 41330–41337. [Google Scholar] [CrossRef] [PubMed]
- Nirmale, T.C.; Kale, B.B.; Varma, A.J. A Review on Cellulose and Lignin Based Binders and Electrodes: Small Steps towards a Sustainable Lithium Ion Battery. Int. J. Biol. Macromol. 2017, 103, 1032–1043. [Google Scholar] [CrossRef]
- Li, W.-C.; Lin, C.-H.; Ho, C.-C.; Cheng, T.-T.; Wang, P.-H.; Wen, T.-C. Superior Performances of Supercapacitors and Lithium-Ion Batteries with Carboxymethyl Cellulose Bearing Zwitterions as Binders. J. Taiwan Inst. Chem. Eng. 2022, 133, 104263. [Google Scholar] [CrossRef]
- Carvalho, D.V.; Loeffler, N.; Hekmatfar, M.; Moretti, A.; Kim, G.-T.; Passerini, S. Evaluation of Guar Gum-Based Biopolymers as Binders for Lithium-Ion Batteries Electrodes. Electrochim. Acta 2018, 265, 89–97. [Google Scholar] [CrossRef]
- Jia, M.; Qin, X.; Zhang, X.; Wang, J.; Liu, S.; Wang, L.; Zhang, Z.; Miao, N.; Jiang, G.; Li, Y.; et al. Novel Rigid-Flexible Hydrogenated Carboxyl Nitrile Rubber-Guar Gum Binder for Ultra-Long Cycle Silicon Anodes in Lithium-Ion Batteries. J. Power Sources 2023, 561, 232759. [Google Scholar] [CrossRef]
- Ling, H.Y.; Hencz, L.; Chen, H.; Wu, Z.; Su, Z.; Chen, S.; Yan, C.; Lai, C.; Liu, X.; Zhang, S. Sustainable Okra Gum for Silicon Anode in Lithium-Ion Batteries. Sustain. Mater. Technol. 2021, 28, e00283. [Google Scholar] [CrossRef]
- Wang, Z.; Dang, G.; Zhang, Q.; Xie, J. Xanthan Gum as a Potential Binder for Graphite Anode in Lithium-Ion Batteries. Int. J. Electrochem. Sci. 2017, 12, 7457–7468. [Google Scholar] [CrossRef]
- Versaci, D.; Nasi, R.; Zubair, U.; Amici, J.; Sgroi, M.; Dumitrescu, M.A.; Francia, C.; Bodoardo, S.; Penazzi, N. New Eco-Friendly Low-Cost Binders for Li-Ion Anodes. J. Solid State Electrochem. 2017, 21, 3429–3435. [Google Scholar] [CrossRef]
- Versaci, D.; Apostu, O.D.; Dessantis, D.; Amici, J.; Francia, C.; Minella, M.; Bodoardo, S. Tragacanth, an Exudate Gum as Suitable Aqueous Binder for High Voltage Cathode Material. Batteries 2023, 9, 199. [Google Scholar] [CrossRef]
- Bie, Y.; Yang, J.; Nuli, Y.; Wang, J. Oxidized Starch as a Superior Binder for Silicon Anodes in Lithium-Ion Batteries. RSC Adv. 2016, 6, 97084–97088. [Google Scholar] [CrossRef]
- Hapuarachchi, S.N.S.; Wasalathilake, K.C.; Nerkar, J.Y.; Jaatinen, E.; O’Mullane, A.P.; Yan, C. Mechanically Robust Tapioca Starch Composite Binder with Improved Ionic Conductivity for Sustainable Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2020, 8, 9857–9865. [Google Scholar] [CrossRef]
- Jin, B.; Wang, D.; Song, L.; Cai, Y.; Ali, A.; Hou, Y.; Chen, J.; Zhang, Q.; Zhan, X. Biomass-Derived Fluorinated Corn Starch Emulsion as Binder for Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries. Electrochim. Acta 2021, 365, 137359. [Google Scholar] [CrossRef]
- Lu, H.; Cornell, A.; Alvarado, F.; Behm, M.; Leijonmarck, S.; Li, J.; Tomani, P.; Lindbergh, G. Lignin as a Binder Material for Eco-Friendly Li-Ion Batteries. Materials 2016, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Ren, S.; Han, D.; Xiao, M.; Wang, S.; Meng, Y. Aqueous Sodium Alginate as Binder: Dramatically Improving the Performance of Dilithium Terephthalate-Based Organic Lithium Ion Batteries. J. Power Sources 2019, 438, 227007. [Google Scholar] [CrossRef]
- Gendensuren, B.; Oh, E.-S. Dual-Crosslinked Network Binder of Alginate with Polyacrylamide for Silicon/Graphite Anodes of Lithium Ion Battery. J. Power Sources 2018, 384, 379–386. [Google Scholar] [CrossRef]
- Huang, J.; Liu, B.; Zhang, P.; Li, R.; Zhou, M.; Wen, B.; Xia, Y.; Okada, S. A Low-Cost and Sustainable Cross-Linked Dextrin as Aqueous Binder for Silicon Anodes in Lithium-Ion Batteries. Solid State Ion. 2021, 373, 115807. [Google Scholar] [CrossRef]
- Kumagai, S.; Abe, Y.; Tomioka, M.; Kabir, M. Suitable Binder for Li-Ion Battery Anode Produced from Rice Husk. Sci. Rep. 2021, 11, 15784. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Sha, Y.; Zhang, C.; Ren, B.; Zhang, L.; Zhang, S. H-Bond Network-Regulated Binder for Si/Graphite Anodes. Ind. Eng. Chem. Res. 2021, 60, 17399–17407. [Google Scholar] [CrossRef]
- Wang, H.; Wei, D.; Zhang, B.; Ji, Z.; Wang, L.; Ling, M.; Liang, C. Epoxy Cross-Linking Enhanced the Toughness of Polysaccharides as a Silicon Anode Binder for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 37704–37712. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, T.; Yu, A. A Carboxymethyl Vegetable Gum as a Robust Water Soluble Binder for Silicon Anodes in Lithium-Ion Batteries. J. Power Sources 2021, 489, 229530. [Google Scholar] [CrossRef]
- Jang, W.; Rajeev, K.K.; Thorat, G.M.; Kim, S.; Kang, Y.; Kim, T.-H. Lambda Carrageenan as a Water-Soluble Binder for Silicon Anodes in Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2022, 10, 12620–12629. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Sharma, S.U.; Shiu, J.-P.; Lee, J.-T. Xylitol-Maleic Anhydride as Small-Molecule Binders for Silicon Anodes in Lithium-Ion Batteries. J. Electrochem. Soc. 2021, 168, 100533. [Google Scholar] [CrossRef]
- Kasnatscheew, J.; Evertz, M.; Streipert, B.; Wagner, R.; Klöpsch, R.; Vortmann, B.; Hahn, H.; Nowak, S.; Amereller, M.; Gentschev, A.-C.; et al. The Truth about the 1st Cycle Coulombic Efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) Cathodes. Phys. Chem. Chem. Phys. 2016, 18, 3956–3965. [Google Scholar] [CrossRef]
- Sarkar, A.; Manohar, C.V.; Mitra, S. A Simple Approach to Minimize the First Cycle Irreversible Loss of Sodium Titanate Anode towards the Development of Sodium-Ion Battery. Nano Energy 2020, 70, 104520. [Google Scholar] [CrossRef]
- Memarzadeh Lotfabad, E.; Kalisvaart, P.; Kohandehghan, A.; Karpuzov, D.; Mitlin, D. Origin of Non-SEI Related Coulombic Efficiency Loss in Carbons Tested against Na and Li. J. Mater. Chem. A 2014, 2, 19685–19695. [Google Scholar] [CrossRef]
- Shin, D.; Park, H.; Paik, U. Cross-Linked Poly(Acrylic Acid)-Carboxymethyl Cellulose and Styrene-Butadiene Rubber as an Efficient Binder System and Its Physicochemical Effects on a High Energy Density Graphite Anode for Li-Ion Batteries. Electrochem. Commun. 2017, 77, 103–106. [Google Scholar] [CrossRef]
- Ui, K.; Kikuchi, S.; Mikami, F.; Kadoma, Y.; Kumagai, N. Improvement of Electrochemical Characteristics of Natural Graphite Negative Electrode Coated with Polyacrylic Acid in Pure Propylene Carbonate Electrolyte. J. Power Sources 2007, 173, 518–521. [Google Scholar] [CrossRef] [Green Version]
- Nordh, T.; Jeschull, F.; Younesi, R.; Koçak, T.; Tengstedt, C.; Edström, K.; Brandell, D. Different Shades of Li4Ti5O12 Composites: The Impact of the Binder on Interface Layer Formation. ChemElectroChem 2017, 4, 2683–2692. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, S.; Paik, U.; Choi, Y.-M. Aqueous Processing of Natural Graphite Particulates for Lithium-Ion Battery Anodes and Their Electrochemical Performance. J. Power Sources 2005, 147, 249–255. [Google Scholar] [CrossRef]
- Li, J.; Lewis, R.B.; Dahn, J.R. Sodium Carboxymethyl Cellulose: A Potential Binder for Si Negative Electrodes for Li-Ion Batteries. Electrochem. Solid-State Lett. 2006, 10, A17. [Google Scholar] [CrossRef]
- Karkar, Z.; Guyomard, D.; Roué, L.; Lestriez, B. A Comparative Study of Polyacrylic Acid (PAA) and Carboxymethyl Cellulose (CMC) Binders for Si-Based Electrodes. Electrochim. Acta 2017, 258, 453–466. [Google Scholar] [CrossRef]
- Qiu, L.; Shao, Z.; Liu, M.; Wang, J.; Li, P.; Zhao, M. Synthesis and Electrospinning Carboxymethyl Cellulose Lithium (CMC-Li) Modified 9,10-Anthraquinone (AQ) High-Rate Lithium-Ion Battery. Carbohydr. Polym. 2014, 102, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Melnick, R.L.; Huff, J.; Chou, B.J.; Miller, R.A. Carcinogenicity of 1,3-Butadiene in C57BL/6 × C3H F1 Mice at Low Exposure Concentrations. Cancer Res. 1990, 50, 6592–6599. [Google Scholar]
- Park, J.H.; Kim, S.H.; Ahn, K.H. Role of Carboxymethyl Cellulose Binder and Its Effect on the Preparation Process of Anode Slurries for Li-Ion Batteries. Colloids Surf. Physicochem. Eng. Asp. 2023, 664, 131130. [Google Scholar] [CrossRef]
- García, A.; Culebras, M.; Collins, M.N.; Leahy, J.J. Stability and Rheological Study of Sodium Carboxymethyl Cellulose and Alginate Suspensions as Binders for Lithium Ion Batteries. J. Appl. Polym. Sci. 2018, 135, 46217. [Google Scholar] [CrossRef] [Green Version]
- Jeschull, F.; Lacey, M.J.; Brandell, D. Functional Binders as Graphite Exfoliation Suppressants in Aggressive Electrolytes for Lithium-Ion Batteries. Electrochim. Acta 2015, 175, 141–150. [Google Scholar] [CrossRef]
- Park, H.; Lee, D.; Song, T. Synthesis of Carboxymethyl Cellulose Lithium by Weak Acid Treatment and Its Application in High Energy-Density Graphite Anode for Li-Ion Batteries. Ind. Eng. Chem. Res. 2018, 57, 8895–8901. [Google Scholar] [CrossRef]
- Kil, K.C.; Paik, U. Lithium Salt of Carboxymethyl Cellulose as an Aqueous Binder for Thick Graphite Electrode in Lithium Ion Batteries. Macromol. Res. 2015, 23, 719–725. [Google Scholar] [CrossRef]
- Lu, H.; Behm, M.; Leijonmarck, S.; Lindbergh, G.; Cornell, A. Flexible Paper Electrodes for Li-Ion Batteries Using Low Amount of TEMPO-Oxidized Cellulose Nanofibrils as Binder. ACS Appl. Mater. Interfaces 2016, 8, 18097–18106. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, L.; Gerbaldi, C.; Chaussy, D.; Zeno, E.; Bodoardo, S.; Beneventi, D. Microfibrillated Cellulose–Graphite Nanocomposites for Highly Flexible Paper-like Li-Ion Battery Electrodes. J. Mater. Chem. 2010, 20, 7344–7347. [Google Scholar] [CrossRef]
- Phillips, T.K.; Bhinde, T.; Clarke, S.M.; Lee, S.Y.; Mali, K.S.; Feyter, S.D. Adsorption of Aldehydes on a Graphite Substrate: Combined Thermodynamic Study of C6−C13 Homologues with a Structural and Dynamical Study of Dodecanal. J. Phys. Chem. C 2010, 114, 6027–6034. [Google Scholar] [CrossRef]
- Françon, H.S.; Gorur, Y.C.; Montanari, C.; Larsson, P.A.; Wågberg, L. Toward Li-Ion Graphite Anodes with Enhanced Mechanical and Electrochemical Properties Using Binders from Chemically Modified Cellulose Fibers. ACS Appl. Energy Mater. 2022, 5, 9333–9342. [Google Scholar] [CrossRef]
- Gorur, Y.C.; Francon, H.S.; Sethi, J.; Maddalena, L.; Montanari, C.; Reid, M.S.; Erlandsson, J.; Carosio, F.; Larsson, P.A.; Wågberg, L. Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials. ACS Appl. Nano Mater. 2022, 5, 9188–9200. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Q.; Pan, J.; Xu, J.; Liu, Y.; Al-Shroofy, M.; Cheng, Y.-T. Low-Temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 32341–32348. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.Y.; Lee, J.S.; Han, H.T.; Jung, J.; Eom, K.; Lee, J.T. Lignin-Based Materials for Sustainable Rechargeable Batteries. Polymers 2022, 14, 673. [Google Scholar] [CrossRef]
- Moreno, A.; Morsali, M.; Sipponen, M.H. Catalyst-Free Synthesis of Lignin Vitrimers with Tunable Mechanical Properties: Circular Polymers and Recoverable Adhesives. ACS Appl. Mater. Interfaces 2021, 13, 57952–57961. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.-M.; Ren, W.-F.; Wang, K.; Su, T.-T.; Jiao, G.-J.; Shao, C.-Y.; Xiao, L.-P.; Sun, R.-C. Ultrahighly Elastic Lignin-Based Copolymers as an Effective Binder for Silicon Anodes of Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2022, 10, 166–176. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Zhang, T.; Li, J.-T.; Huang, L.; Sun, S.-G. A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 3599–3605. [Google Scholar] [CrossRef]
- Schlemmer, W.; Selinger, J.; Hobisch, M.A.; Spirk, S. Polysaccharides for Sustainable Energy Storage—A Review. Carbohydr. Polym. 2021, 265, 118063. [Google Scholar] [CrossRef]
- Cuesta, N.; Ramos, A.; Cameán, I.; Antuña, C.; García, A.B. Hydrocolloids as Binders for Graphite Anodes of Lithium-Ion Batteries. Electrochim. Acta 2015, 155, 140–147. [Google Scholar] [CrossRef]
- Chen, D.; Yi, R.; Chen, S.; Xu, T.; Gordin, M.L.; Wang, D. Facile Synthesis of Graphene–Silicon Nanocomposites with an Advanced Binder for High-Performance Lithium-Ion Battery Anodes. Solid State Ion. 2014, 254, 65–71. [Google Scholar] [CrossRef]
- He, C.; Gendensuren, B.; Kim, H.; Lee, H.; Oh, E.-S. Electrochemical Performance of Polysaccharides Modified by the Introduction of SO3H as Binder for High-Powered Li4Ti5O12 Anodes in Lithium-Ion Batteries. J. Electroanal. Chem. 2020, 876, 114532. [Google Scholar] [CrossRef]
- Bryntesen, S.N.; Finne, P.H.; Svensson, A.M.; Shearing, P.R.; Tolstik, N.; Sorokina, I.T.; Vinje, J.; Lamb, J.J.; Burheim, O.S. Structured Aqueous Processed Lignin-Based NMC Cathodes for Energy-Dense LIBs with Improved Rate Capability. J. Mater. Chem. A 2023, 11, 6483–6502. [Google Scholar] [CrossRef]
- Bryntesen, S.N.; Tolstorebrov, I.; Svensson, A.M.; Shearing, P.; Lamb, J.J.; Burheim, O.S. Introducing Lignin as a Binder Material for the Aqueous Production of NMC111 Cathodes for Li-Ion Batteries. Mater. Adv. 2023, 4, 523–541. [Google Scholar] [CrossRef]
- Li, J.; Klöpsch, R.; Nowak, S.; Kunze, M.; Winter, M.; Passerini, S. Investigations on Cellulose-Based High Voltage Composite Cathodes for Lithium Ion Batteries. J. Power Sources 2011, 196, 7687–7691. [Google Scholar] [CrossRef]
- Zhong, H.; Lu, J.; He, A.; Sun, M.; He, J.; Zhang, L. Carboxymethyl Chitosan/Poly(Ethylene Oxide) Water Soluble Binder: Challenging Application for 5V LiNi0.5Mn1.5O4 Cathode. J. Mater. Sci. Technol. 2017, 33, 763–767. [Google Scholar] [CrossRef]
- Kim, U.-H.; Kuo, L.-Y.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.-K. Quaternary Layered Ni-Rich NCMA Cathode for Lithium-Ion Batteries. ACS Energy Lett. 2019, 4, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Dupré, N.; Gaillot, A.-C.; Lestriez, B.; Martin, J.-F.; Daniel, L.; Patoux, S.; Guyomard, D. CMC as a Binder in LiNi0.4Mn1.6O4 5V Cathodes and Their Electrochemical Performance for Li-Ion Batteries. Electrochim. Acta 2012, 62, 77–83. [Google Scholar] [CrossRef]
- Zhao, T.; Meng, Y.; Ji, R.; Wu, F.; Li, L.; Chen, R. Maintaining Structure and Voltage Stability of Li-Rich Cathode Materials by Green Water-Soluble Binders Containing Na+ Ions. J. Alloys Compd. 2019, 811, 152060. [Google Scholar] [CrossRef]
- Xu, J.; Li, K.; Liu, L.; Ma, J.; Zhang, H. Tannic Acid—A Bridge and Suspending Agent for Lithium Cobalt Oxide and Reduced Graphene Oxide: A Lodestar for Lithium-Ion Batteries. Environ. Technol. 2023, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Porcher, W.; Lestriez, B.; Jouanneau, S.; Guyomard, D. Design of Aqueous Processed Thick LiFePO4 Composite Electrodes for High-Energy Lithium Battery. J. Electrochem. Soc. 2008, 156, A133. [Google Scholar] [CrossRef]
- Porcher, W.; Moreau, P.; Lestriez, B.; Jouanneau, S.; Guyomard, D. Is LiFePO4 Stable in Water?: Toward Greener Li–Ion Batteries. Electrochem. Solid-State Lett. 2007, 11, A4. [Google Scholar] [CrossRef]
Binder | Electrode | Specific Capacity (mAh g−1) | References |
---|---|---|---|
Anode: | |||
CMC-based | Graphite | 300 | [60] |
Graphite | 141 | [37] | |
Graphite | 300 | [70] | |
Si-based | 1153 | [23] | |
Si-based | 1100 | [64] | |
Si-based | 1000–1900 | [65] | |
Si-based | 1544 | [28] | |
CNF-based | Graphite | 330 | [77] |
Graphite | 345 | [73] | |
Lignin-based | Graphite | 305 | [47] |
Si-based | 1914 | [28] | |
Si-based | 939 | [81] | |
Si/graphite | 492 | [28] | |
Guar gum-based | Graphite | 310 | [84] |
Si-based | 2222 | [82] | |
Si-based | 1402 | [39] | |
Xanthan gum | Graphite | 250 | [41] |
Si-based/graphene | 725 | [85] | |
Gum arabic | Graphite | 200 | [84] |
Si-based | 2000 | [30] | |
Okra gum | Si-based | 1434 | [40] |
Carrageenan | Graphite | 300 | [84] |
Si-based | 2031 | [55] | |
Sodium alginate | Graphite | 300 | [84] |
Si/graphite | 849 | [49] | |
Si-based | 1000 | [54] | |
Starch-based | Si-based | 500 | [46] |
Si-based | 1864–2874 | [46] | |
Si-based | 1100 | [45] | |
Si-based | 2106 | [50] | |
Si-based | 2000 | [44] | |
Cathode: | |||
Lignin | LiFePO4 | 148 | [47] |
NMC111 | 140 | [87] | |
CMC/lignin | NMC111 | 140 | [88] |
CMC | Li [Li0.2Mn0.56Ni0.16Co0.08]O2 | 230 | [89] |
Carboxymethyl chitosan/poly (ethylene oxide) | LiNi0.5Mn1.5O4 | 120 | [90] |
Tragacanth gum | LNMO-based | 122 | [43] |
Sodium alginate | Li2TP | 200 | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobryden, I.; Montanari, C.; Bhattacharjya, D.; Aydin, J.; Ahniyaz, A. Bio-Based Binder Development for Lithium-Ion Batteries. Materials 2023, 16, 5553. https://doi.org/10.3390/ma16165553
Dobryden I, Montanari C, Bhattacharjya D, Aydin J, Ahniyaz A. Bio-Based Binder Development for Lithium-Ion Batteries. Materials. 2023; 16(16):5553. https://doi.org/10.3390/ma16165553
Chicago/Turabian StyleDobryden, Illia, Céline Montanari, Dhrubajyoti Bhattacharjya, Juhanes Aydin, and Anwar Ahniyaz. 2023. "Bio-Based Binder Development for Lithium-Ion Batteries" Materials 16, no. 16: 5553. https://doi.org/10.3390/ma16165553
APA StyleDobryden, I., Montanari, C., Bhattacharjya, D., Aydin, J., & Ahniyaz, A. (2023). Bio-Based Binder Development for Lithium-Ion Batteries. Materials, 16(16), 5553. https://doi.org/10.3390/ma16165553