The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixing and Sample Preparation
2.3. Compressive Strength and Water Absorption Testing
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nayana, A.M.; Rakesh, P. Strength and durability study on cement mortar with ceramic waste and micro-silica. Mater. Today Proc. 2018, 5, 24780–24791. [Google Scholar] [CrossRef]
- Li, L.G.; Zhu, J.; Huang, Z.H.; Kwan, A.K.H.; Li, L.J. Combined effects of micro-silica and nano-silica on durability of mortar. Constr. Build. Mater. 2017, 157, 337–347. [Google Scholar] [CrossRef]
- Aboul-Nour, L.A.; Mohamed, H.A.; Teama, M. Strength Properties of Nano and Micro Silica Mortar. Egypt. Int. J. Eng. Sci. Technol. 2020, 31, 35–43. [Google Scholar]
- Li, L.G.; Huang, Z.H.; Ng, P.M.; Zhu, J.; Kwan, A.K.H. Effects of Micro-silica and Nano-silica on Fresh Properties of Mortar. Mater. Sci. 2017, 23, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.A.; Kockal, N.U. Effects of Silica Fume and Micro Silica on the Properties of Mortars Containing Waste PVC Plastic Fibers. Microplastics 2022, 1, 587–609. [Google Scholar] [CrossRef]
- Khan, K.; Ullah, M.F.; Shahzada, K.; Amin, M.N.; Bibi, T.; Wahab, N.; Aljaafari, A. Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar. Constr. Build. Mater. 2020, 258, 119589. [Google Scholar] [CrossRef]
- Kooshkaki, A.; Eskandari-Naddaf, H. Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano silica by multi-objective ANN modeling. Constr. Build. Mater. 2019, 212, 176–191. [Google Scholar] [CrossRef]
- Sikora, P.; Augustyniak, A.; Cendrowski, K.; Horszczaruk, E.; Rucinska, T.; Nawrotek, P.; Mijowska, E. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials. Materials 2016, 9, 701. [Google Scholar] [CrossRef] [Green Version]
- Sikora, P.; Horszczaruk, E.; Rucinska, T. The effect of nanosilica and titanium dioxide on the mechanicaland self-cleaning properties of waste-glass cement mortar. Procedia Eng. 2015, 108, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Skoczylas, K.; Rucińska, T. Strength and durability of cement mortars containing nanosilica and waste glass fine aggregate. Cem. Lime Concr. 2018, 21, 206–215. [Google Scholar]
- Cai, Y.; Xuan, D.; Poon, C.S. Effects of nano-SiO2 and glass powder on mitigating alkali-silica reaction of cement glass mortars. Constr. Build. Mater. 2019, 201, 295–302. [Google Scholar] [CrossRef]
- Lu, J.X.; Poon, C.S. Improvement of early-age properties for glass-cement mortar by adding nanosilica. Cem. Concr. Compos. 2018, 89, 18–30. [Google Scholar] [CrossRef]
- Gupta, S.; Krishnan, P.; Kashani, A.; Kua, H.W. Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Constr. Build. Mater. 2020, 262, 120688. [Google Scholar] [CrossRef]
- Hou, P.K.; Kawashima, S.; Wang, K.J.; Corr, D.J.; Qian, J.S.; Shah, S.P. Effects of colloidal nanosilica on rheological and mechanical properties of fly ashe cement mortar. Cem. Concr. Compos. 2013, 35, 12–22. [Google Scholar] [CrossRef] [Green Version]
- del Bosque, I.E.S.; Martin-Pastor, M.; Martínez-Ramírez, S.; Blanco-Varela, M.T. Effect of temperature on C3S and C3S ţ nanosilica hydration and C-S-H structure. J. Am. Ceram. Soc. 2013, 96, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Ghafari, E.; Costa, H.; Júlio, E. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater. Des. 2014, 59, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. Beneficial role of nano silica in cement-based materials—A review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar] [CrossRef]
- Li, H.; Xiao, H.G.; Yuan, J.; Ou, J. Microstructure of cement mortar with nano-particles. Compos. Part B Eng. 2004, 35, 185–189. [Google Scholar] [CrossRef]
- Joshaghani, A.; Moeini, M.A. Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Construct. Build. Mater. 2017, 153, 818–831. [Google Scholar] [CrossRef]
- Horszczaruk, E.; Mijowska, E.; Cendrowski, K.; Sikora, P. Influence of the new method of nanosilica addition on the mechanical properties of cement mortars. Cem. Lime Concr. 2014, 5, 308–315. [Google Scholar]
- Flores-Vivian, I.; Pradoto, R.G.K.; Moini, M.; Kozhukhova, M.; Potapov, V.; Sobolev, K. The e_ect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials. Front. Struct. Civ. Eng. 2017, 11, 436–445. [Google Scholar] [CrossRef]
- Sahibulla, S.M.M.; Jaisingh, S.J. Pozzolanic biosilica, biochar, and egg shell in setting time, WVTR, and compression strength of biocement mortar: A Taguchi GRA validation. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Li, J.; Jin, Q.; Zhang, W.; Li, C.; Monteiro, P.J.M. Microstructure and durability performance of sustainable cementitious composites containing high-volume regenerative biosilica. Resour Conserv. Recycl. 2022, 178, 106038. [Google Scholar] [CrossRef]
- Hosseini, M.M.; Shao, Y.; Whalen, J.K. Biocement production from silicon-rich plant residues: Perspectives and future potential in Canada. Biosyst. Eng. 2011, 110, 351–362. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Esmaeili, J.; Kasaei, J.; Hajialioghli, R. Properties of Sustainable Cement Mortars Containing High Volume of Raw Diatomite. Sustain. Mater. Technol. 2018, 16, 47–53. [Google Scholar]
- Khodabakhshian, A.; de Brito, J.; Ghalehnovi, M.; Shamsabadi, E.A. Mechanical environmental and economic performance of structural concrete containing silica fume and marble industry waste powder. Constr. Build. Mater. 2018, 169, 237–251. [Google Scholar] [CrossRef]
- Subramanian, N. Introduction to Reinforced Concrete. In Design of Reinforced Concrete Structures; Harper & Row: New York, NY, USA, 2013. [Google Scholar]
- Li, J.; Zhang, W.; Li, C.; Monteiro, P.J.M. Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. J. Clean. Prod. 2019, 223, 662–679. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Li, C.; Monteiro, P.J. Eco-friendly mortar with high-volume diatomite and fly ash: Performance and life-cycle assessment with regional variability. J. Clean. Prod. 2020, 261, 121224. [Google Scholar] [CrossRef]
- Arzumanyan, A.A.; Tadevosyan, V.G.; Muradyan, N.G.; Navasardyan, H.V. Study of “Saralsk” Deposit for Practical Applications in Construction. J. Arch. Eng. Res. 2021, 1, 3–6. [Google Scholar] [CrossRef]
- Muradyan, N.G.; Gyulasaryan, H.; Arzumanyan, A.A.; Badalyan, M.M.; Kalantaryan, M.A.; Vardanyan, Y.V.; Laroze, D.; Manukyan, A.; Barseghyan, M.G. The Effect of Multi-Walled Carbon Nanotubes on the Compressive Strength of Cement Mortars. Coatings 2022, 12, 1933. [Google Scholar] [CrossRef]
- GOST EN 196-1-2002; Methods of Testing Cement. Part 1. Determination of Strength. Available online: https://www.armstandard.am/en/standart/5556 (accessed on 31 July 2023).
- GOST EN 196-2-2002; Methods of Testing Cement. Part 2. Chemical Analysis of Cement. Available online: https://www.armstandard.am/en/standart/5557 (accessed on 31 July 2023).
- GOST EN 196-3-2002; Methods of Testing Cement. Part 3. Determination of Setting Time and Soundness. Available online: https://www.armstandard.am/en/standart/5558 (accessed on 31 July 2023).
- GOST 12730.3-2020; Concretes. Method of Determination of Water Absorption. Available online: https://www.armstandard.am/en/standart/5508 (accessed on 31 July 2023).
Characteristics | Days | Results Obtained | ||||||
---|---|---|---|---|---|---|---|---|
Standard consistency (%) | - | 30 | ||||||
Specific gravity (g/cm3) | - | 3.1 | ||||||
Blain’s fineness (m2/kg) | - | 354.8 | ||||||
Compressive strength (MPa) | 3 days | 21 | ||||||
7 days | 37 | |||||||
28 days | 51 | |||||||
Setting time (min) | Initial | 50 | ||||||
Final | 310 | |||||||
Chemical composition of cement (wt.%) | ||||||||
Al2O3 | SiO2 | Fe2O3 | CaO | MgO | SO3 | Loss of ignition | Insol. Resid. | Free CaO |
3.93 | 21.9 | 2.17 | 62.2 | 1.1 | 2.1 | 3.2 | 1.9 | 1.5 |
Fineness Modulus | Specific Gravity | Zone | Bulk Density in Compact State (kg/m3) | Bulk Density in Loose State (g/cm3) |
---|---|---|---|---|
2.35 | 2.44 | II | 1739 | 1.57 |
SiO2 | Al2O3 | Fe2O3 | K2O | MgO |
---|---|---|---|---|
88.92 | 6.1 | 2.8 | 1.34 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muradyan, N.G.; Arzumanyan, A.A.; Kalantaryan, M.A.; Vardanyan, Y.V.; Yeranosyan, M.; Ulewicz, M.; Laroze, D.; Barseghyan, M.G. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method. Materials 2023, 16, 5516. https://doi.org/10.3390/ma16165516
Muradyan NG, Arzumanyan AA, Kalantaryan MA, Vardanyan YV, Yeranosyan M, Ulewicz M, Laroze D, Barseghyan MG. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method. Materials. 2023; 16(16):5516. https://doi.org/10.3390/ma16165516
Chicago/Turabian StyleMuradyan, Nelli G., Avetik A. Arzumanyan, Marine A. Kalantaryan, Yeghiazar V. Vardanyan, Mkrtich Yeranosyan, Malgorzata Ulewicz, David Laroze, and Manuk G. Barseghyan. 2023. "The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method" Materials 16, no. 16: 5516. https://doi.org/10.3390/ma16165516
APA StyleMuradyan, N. G., Arzumanyan, A. A., Kalantaryan, M. A., Vardanyan, Y. V., Yeranosyan, M., Ulewicz, M., Laroze, D., & Barseghyan, M. G. (2023). The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method. Materials, 16(16), 5516. https://doi.org/10.3390/ma16165516