Electroplastic Effect during Tension and Bending in Duplex Stainless Steel
Abstract
:1. Introduction
2. Materials and Research Methods
- (a)
- No current applied.
- (b)
- Single pulses with an amplitude current density of j = 500, 550, and 740 A/mm2 and pulse durations of τ = 250 and 1000 μs.
- (c)
- Multi-pulse current with densities of j = 15 and 45 A/mm2, pulse durations of τ = 100 and 900 μs, and a frequency of 1000 Hz.
- (d)
- Heating using a technical dryer to reach a temperature of 190 ℃, corresponding to the multi-pulse current mode with a density of j = 45 A/mm2 and a duration of τ = 100 μs.
3. Results
3.1. As-Received Microstructure
3.2. Tension
3.3. Microstructure
3.4. Bending
4. Discussion
4.1. Tension
4.2. Bending
4.3. Microstructure
5. Conclusions
- The application of a pulsed current results in a reduction in the acting stresses, both in tension and bending. This reduction becomes more pronounced as the current density increases and the strain rate decreases. Increasing the strain rate by a factor of ten decreases the contribution of the electroplastic effect from single pulses in reducing flow stresses by 20%. However, the strain rate effect is not observed in the case of a multi-pulse current.
- The effect of reducing the strength characteristics at the same temperatures in tension or bending is higher for a multi-pulse current compared to external heating. This finding confirms the presence of an electroplastic effect in both deformation scenarios. The relative reduction in flow stresses when using a multi-pulse current is approximately 200 MPa in tension and 800 MPa in bending.
- In all investigated modes and conditions of current, as well as external heating, the elongation in tension decreases more significantly with higher strain rates and current density.
- The introduction of a multipulse current during bending leads to a reduction in the strain hardening coefficient and promotes springback.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troitskii, O.A. Electromechanical effect in metals. JETP Lett. 1969, 1, 18–22. Available online: http://jetpletters.ru/ps/1686/article_25672.shtml (accessed on 23 April 2023).
- Conrad, H. Effects of Electric Current on Solid State Phase Transformations in Metals. Mater. Sci. Eng. A 2000, 287, 227–237. [Google Scholar] [CrossRef]
- Kim, M.-J.; Yoon, S.; Park, S.; Jeong, H.-J.; Park, J.-W.; Kim, K.; Jo, J.; Heo, T.; Hong, S.-T.; Cho, S.H.; et al. Elucidating the Origin of Electroplasticity in Metallic Materials. Appl. Mater. Today 2020, 21, 100874. [Google Scholar] [CrossRef]
- Sheng, Y.; Hua, Y.; Wang, X.; Zhao, X.; Chen, L.; Zhou, H.; Wang, J.; Berndt, C.C.; Li, W. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties. Materials 2018, 11, 185. [Google Scholar] [CrossRef]
- Tiwari, J.; Pratheesh, P.; Bembalge, O.B.; Krishnaswamy, H.; Amirthalingam, M.; Panigrahi, S.K. Microstructure Dependent Electroplastic Effect in AA 6063 Alloy and Its Nanocomposites. J. Mater. Res. Technol. 2021, 12, 2185–2204. [Google Scholar] [CrossRef]
- Ao, D.; Chu, X.; Yang, Y.; Lin, S.; Gao, J. Effect of Electropulsing on Springback during V-Bending of Ti-6Al-4V Titanium Alloy Sheet. Int. J. Adv. Manuf. Technol. 2018, 96, 3197–3207. [Google Scholar] [CrossRef]
- Xu, C.; Li, Y.; Rao, X. Effect of Electropulsing Rolling on Mechanical Properties and Microstructure of AZ31 Magnesium Alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 3777–3784. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, G.; Fu, X.; Zhou, W. Effect of Electropulsing on Deformation Behavior of Ti–6Al–4V Alloy during Cold Drawing. Trans. Nonferrous Met. Soc. China 2014, 24, 1012–1021. [Google Scholar] [CrossRef]
- Vinogradov, A.; Lazarev, S.G.; Mozgovoi, A.L.; Gornostai-Polskii, S.A.; Okumura, R.; Hashimoto, S. Surface Amorphization in Conductors by Using Skin Effect: Model and Experiment. J. Appl. Phys. 2007, 101, 033510. [Google Scholar] [CrossRef]
- Gui-Rong, L.; Hong-Ming, W.; Pei-Si, L.; Lei-Zhang, G.; Cong-Xiang, P.; Rui, Z. Mechanism of dislocation kinetics under magnetoplastic effect. Acta Phys. Sin. 2015, 64, 148102. [Google Scholar] [CrossRef]
- Yao, K.-F.; Wang, J.; Zheng, M.; Yu, P.; Zhang, H. A Research on Electroplastic Effects in Wire-Drawing Process of an Austenitic Stainless Steel. Scr. Mater. 2001, 45, 533–539. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, G.Y.; Yan, Y.J.; Fang, W. Effect of Current Pulses on the Drawing Stress and Properties of Cr17Ni6Mn3 and 4J42 Alloys in the Cold-Drawing Process. J. Mater. Process. Technol. 2002, 120, 13–16. [Google Scholar] [CrossRef]
- Gao, B.; Wang, L.; Liu, Y.; Liu, J.; Xiao, L.; Sui, Y.; Sun, W.; Chen, X.; Zhou, H. Enhanced Strength and Ductility of the Low-Carbon Steel with Heterogeneous Lamellar Dual-Phase Structure Produced by Cyclic Intercritical Rolling. J. Mater. Res. Technol. 2023, 23, 6230–6243. [Google Scholar] [CrossRef]
- Qian, L.; Zhan, L.; Zhou, B.; Zhang, X.; Liu, S.; Lv, Z. Effects of Electroplastic Rolling on Mechanical Properties and Microstructure of Low-Carbon Martensitic Steel. Mater. Sci. Eng. A 2021, 812, 141144. [Google Scholar] [CrossRef]
- Schindler, I. Hot Deformation and Microstructure Evolution of Metallic Materials. Materials 2023, 16, 1602. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lan, S.; Ni, J. Experimental Study of Electro-Plastic Effect on Advanced High Strength Steels. Mater. Sci. Eng. A 2013, 582, 211–218. [Google Scholar] [CrossRef]
- Xie, H.; Dong, X.; Liu, K.; Ai, Z.; Peng, F.; Wang, Q.; Chen, F.; Wang, J. Experimental Investigation on Electroplastic Effect of DP980 Advanced High Strength Steel. Mater. Sci. Eng. A 2015, 637, 23–28. [Google Scholar] [CrossRef]
- Breda, M.; Calliari, I.; Bruschi, S.; Forzan, M.; Ghiotti, A.; Michieletto, F.; Spezzapria, M.; Gennari, C. Influence of Stacking Fault Energy in Electrically Assisted Uniaxial Tension of FCC Metals. Mater. Sci. Technol. 2017, 33, 317–325. [Google Scholar] [CrossRef]
- Zeng, Y.; Mittnacht, T.; Werner, W.; Du, Y.; Schneider, D.; Nestler, B. Gibbs Energy and Phase-Field Modeling of Ferromagnetic Ferrite (α)→ Paramagnetic Austenite (γ) Transformation in Fe–C Alloys under an External Magnetic Field. Acta Mater. 2022, 225, 117595. [Google Scholar] [CrossRef]
- Golovin, Y.I. Magnetoplastic Effects in Solids. Phys. Solid State 2004, 46, 789–824. [Google Scholar] [CrossRef]
- Okazaki, K.; Kagawa, M.; Conrad, H. An Evaluation of the Contributions of Skin, Pinch and Heating Effects to the Electroplastic Effect in Titatnium. Mater. Sci. Eng. 1980, 45, 109–116. [Google Scholar] [CrossRef]
- Kinsey, B.; Cullen, G.; Jordan, A.; Mates, S. Investigation of Electroplastic Effect at High Deformation Rates for 304SS and Ti–6Al–4V. CIRP Ann. 2013, 62, 279–282. [Google Scholar] [CrossRef]
- Wang, W.; Ma, Y.; Yang, M.; Jiang, P.; Yuan, F.; Wu, X. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates. Metals 2017, 8, 11. [Google Scholar] [CrossRef]
- Gennari, C.; Forzan, M.; Gobbo, R.; Bruschi, S.; Stolyarov, V.; Calliari, I. Electrically Enhanced Plasticity of Duplex Stainless Steel UNS S32750. Mater. Lett. 2021, 304, 130680. [Google Scholar] [CrossRef]
- Salandro, W.A.; Bunget, C.; Mears, L. Modeling and Quantification of the Electroplastic Effect When Bending Stainless Steel Sheet Metal. In Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, Erie, PA, USA, 12–15 October 2010; ASMEDC: Houston, TX, USA, 2010; Volume 1, pp. 581–590. [Google Scholar]
- Mohammadtabar, N.; Bakhshi-Jooybari, M.; Gorji, H.; Jamaati, R.; Szpunar, J.A. Effect of Electric Current Pulse Type on Springback, Microstructure, Texture, and Mechanical Properties During V-Bending of AA2024 Aluminum Alloy. J. Manuf. Sci. Eng. 2021, 143, 011004. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Usmanov, E.I.; Rezyapova, L.R. The Superstrength of Nanostructured Metallic Materials: Their Physical Nature and Hardening Mechanisms. Phys. Met. Metallogr. 2022, 123, 1272–1278. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | Cu | W | P | S | N | |
---|---|---|---|---|---|---|---|---|---|---|---|
UNS S32750 | 0.017 | 0.24 | 0.88 | 25.12 | 6.94 | 3.85 | 0.15 | — | 0.019 | 0.0010 | 0.295 |
№ | Tension Conditions | Current Regimes | T, °C | Strain Rate, έ, s−1 | Ultimate Tensile Strength, MPa | Yield Stress, MPa | Elongation, % | ||
---|---|---|---|---|---|---|---|---|---|
j, A/mm2 | τ, μs | Frequency, Hz | |||||||
1 | without current | - | - | - | RT | 3 × 10−4 | 1010 | 765 | 42 |
2 | without current | - | - | - | RT | 3 × 10−2 | 1000 | 820 | 32 |
3 | single impulses | 740 | 250 | * 0.2 | 35 | 3 × 10−2 | 990 | 805 | 29 |
4 | single impulses | 540 | 1000 | * 0.2 | 40 | 3 × 10−3 | 955 | 785 | 30 |
5 | single impulses | 540 | 1000 | * 0.5 | 45 | 3 × 10−4 | 900 | 665 | 33 |
6 | multi-pulse | 15 | 900 | 1000 | 65 | 3 × 10−4 | 920 | 665 | 33 |
7 | multi-pulse | 45 | 100 | 1000 | 145 | 3 × 10−3 | 840 | 580 | 28 |
8 | multi-pulse | 45 | 100 | 1000 | 190 | 3 × 10−4 | 860 | 570 | 26 |
9 | technical dryer | - | - | - | 190 | 3 × 10−4 | 895 | 610 | 33 |
№ | Bending Conditions | Current Regimes | T, °C | Bending Speed, mm/min | Bending Strength, MPa | Spring Angle | ||
---|---|---|---|---|---|---|---|---|
j, A/mm2 | τ, μs | Frequency, Hz | ||||||
1 | without current | - | - | - | RT | 5 | 1572 | 8 |
2 | without current | - | - | - | RT | 200 | 1718 | 9 |
3 | multi-pulse | 20 | 100 | 1000 | 100 | 5 | 1042 | 6.5 |
4 | multi-pulse | 30 | 220 | 775 | 6.5 | |||
5 | technical dryer | - | - | - | 100 | 1208 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakhomov, M.; Korolkov, O.; Pigato, M.; Gennari, C.; Calliari, I.; Stolyarov, V. Electroplastic Effect during Tension and Bending in Duplex Stainless Steel. Materials 2023, 16, 4119. https://doi.org/10.3390/ma16114119
Pakhomov M, Korolkov O, Pigato M, Gennari C, Calliari I, Stolyarov V. Electroplastic Effect during Tension and Bending in Duplex Stainless Steel. Materials. 2023; 16(11):4119. https://doi.org/10.3390/ma16114119
Chicago/Turabian StylePakhomov, Mikhail, Oleg Korolkov, Mirko Pigato, Claudio Gennari, Irene Calliari, and Vladimir Stolyarov. 2023. "Electroplastic Effect during Tension and Bending in Duplex Stainless Steel" Materials 16, no. 11: 4119. https://doi.org/10.3390/ma16114119
APA StylePakhomov, M., Korolkov, O., Pigato, M., Gennari, C., Calliari, I., & Stolyarov, V. (2023). Electroplastic Effect during Tension and Bending in Duplex Stainless Steel. Materials, 16(11), 4119. https://doi.org/10.3390/ma16114119