Hot Deformation Behavior and Processing Maps of Pure Copper during Isothermal Compression
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. True Stress–Strain Curves
3.1.1. Microstructure Evolution
3.1.2. Microhardness Analysis
3.2. Establishment and Modification of Constitutive Models of Pure Copper
3.2.1. Subsubsection
3.2.2. Strain-Compensated Arrhenius Constitutive Model
3.2.3. Prediction Accuracy Evaluation
3.3. Hot-Processing Maps of Pure Copper
3.3.1. Construction and Analysis of Hot-Processing Maps
3.3.2. Optimal Process Interval Analysis
4. Conclusions
- (1)
- Pure copper features a flow stress that is negatively correlated with temperature and positively sensitive to strain rate. With an increase in deformation temperature and a decrease in strain rate, pure copper’s average grain size grows. The average hardness value of pure copper declines with rising temperature but has no obvious change trend with the strain rate.
- (2)
- The constitutive equation for pure copper was established via the strain-compensated Arrhenius model. The value of the correlation coefficient and the average absolute relative error values were 0.9763 and 10.5%, respectively, showing great accuracy in predicting flow stress, which can provide a reference for practical production and numerical simulation.
- (3)
- Based on the DMM model, the hot-processing maps were constructed. The suitable processing window of pure copper was determined at the temperature range of 700~750 °C and strain rate range of 0.1~1 s−1.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahana, D.; Mauraya, A.K.; Pal, P.; Singh, P.; Muthusamy, S.K. Comparative study on surface states and CO gas sensing characteristics of CuO thin films synthesised by vacuum evaporation and sputtering processes. Mater. Res. Bull. 2022, 145, 111567. [Google Scholar] [CrossRef]
- Bian, Y.J.; Cha, M.Y.; Chen, L.; Sun, Q.Q.; Zhang, W.; Ding, S.J. Correlation between the formation of particle defects on sputtered Cu seed layers and Cu targets. Micro Nano Lett. 2019, 14, 1079–1082. [Google Scholar] [CrossRef]
- Gao, W.; Belyakov, A.; Miura, H.; Sakai, T. Dynamic recrystallization of copper polycrystals with different purities. Mater. Sci. Eng. A 1999, 265, 233–239. [Google Scholar] [CrossRef]
- Yang, J.Y.; Kim, W.J. Examination of high-temperature mechanisms and behavior under compression and processing maps of pure copper. J. Mater. Res. Technol. 2020, 9, 960–968. [Google Scholar] [CrossRef]
- Huang, S.H.; Shu, D.Y.; Hu, C.K.; Zhu, S.F. Effect of strain rate and deformation temperature on strain hardening and softening behavior of pure copper. Trans. Nonferrous Metals Soc. China 2016, 26, 1044–1054. [Google Scholar] [CrossRef]
- Lu, Y.; Xie, H.B.; Wang, J.; Li, Z.; Lin, F.; Han, J.; Han, J.T.; Jiang, Z.Y. Characteristic flow behaviour prediction and microstructure analysis of a commercial Si–Cr micro-alloyed spring steel under isothermal compression. Vacuum 2021, 186, 110066. [Google Scholar] [CrossRef]
- ASTM Standard, E112-12; Standard Test Methods for Determining Average Grain Size. IOP: Bristol, UK, 2013; pp. 1–27.
- Lin, Y.C.; Xia, Y.C.; Chen, X.M.; Chen, M.S. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Comput. Mater. Sci. 2010, 50, 227–233. [Google Scholar] [CrossRef]
- Shen, G.; Vedhanayagam, A.; Kropp, E.; Altan, T. A method for evaluating friction using a backward extrusion-type forging. J. Mech. Work. Technol. 1992, 33, 109–123. [Google Scholar] [CrossRef]
- Venugopal, S.; Srinivasan, G.; Venkadesan, S. A note on the determination of the friction factor by means of the reduction-capacity test. J. Mech. Work. Technol. 1989, 19, 261–266. [Google Scholar] [CrossRef]
- Niu, J.T. Physical Simulation in Materials and Hot-Working, 1st ed.; National Defense Industry Press: Beijing, China, 1999. [Google Scholar]
- Han, Y.; Yan, S.; Yin, B.; Li, H.; Ran, X. Effects of temperature and strain rate on the dynamic recrystallization of a medium-high-carbon high-silicon bainitic steel during hot deformation. Vacuum 2018, 148, 78–87. [Google Scholar] [CrossRef]
- Lu, Y.; Xie, H.B.; Wang, J.; Li, Z.; Lin, F.; Han, J.; Han, J.T.; Jiang, Z.Y. Influence of hot compressive parameters on flow behaviour and microstructure evolution in a commercial medium carbon micro-alloyed spring steel. J. Manuf. Process. 2020, 58, 1171–1181. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, P.; Wang, X.; Zhan, M.; Li, H. Analysis of anisotropy mechanism in the mechanical property of titanium alloy tube formed through hot flow forming. J. Mater. Sci. Technol. 2021, 86, 77–90. [Google Scholar] [CrossRef]
- Tian, B.; Lind, C.; Schafler, E.; Paris, O. Evolution of microstructures during dynamic recrystallization and dynamic recovery in hot deformed Nimonic 80a. Mater. Sci. Eng. A 2004, 367, 198–204. [Google Scholar] [CrossRef]
- Sellars, C.M.; Whiteman, J.A. Recrystallization and grain growth in hot rolling. Met. Sci. Heat Treat. 1979, 13, 187–194. [Google Scholar] [CrossRef]
- Jonas, J.J.; Sellars, M. Strength and structure under hot-working conditions. Mater. Rev. 1969, 14, 1–24. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Xu, S.Q.; Dong, X.H. Deformation behavior of AA6063 aluminium alloy after removing friction effect under hot working conditions. Acta Metall. Sin. Lett. 2008, 21, 451–458. [Google Scholar] [CrossRef]
- Ferdowsi, R.M.G.; Nakhaie, D.; Benhangi, P.H.; Ebrahimi, G.R. Modeling the High Temperature Flow Behavior and Dynamic Recrystallization Kinetics of a Medium Carbon Microalloyed Steel. J. Mater. Eng. Perform. 2014, 23, 1077–1087. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J.H. Effect of Strain Rate Upon Plastic Flow of Steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Gegel, H.L.; Doraivelu, S.M.; Malas, J.C.; Morgan, J.T.; Lark, K.A.; Barker, D.R. Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242. Metall. Trans. A 1984, 15, 1883–1892. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Seshacharyulu, T. Modelling of hot deformation for microstructural control. Int. Mater. Rev. 1998, 43, 243–258. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K. Processing Maps: A Status Report. J. Mater. Eng. Perform. 2003, 12, 638–645. [Google Scholar] [CrossRef]
- Wu, H.Y.; Wu, C.T.; Yang, J.C.; Lin, M.J. Hot workability analysis of AZ61 Mg alloys with processing maps. Mater. Sci. Eng. A 2014, 607, 261–268. [Google Scholar] [CrossRef]
- Kong, Y.P.; Li, C.; Xie, Q.L.; Zhu, S. Hot deformation characteristics and processing map of nickel-based C276 superalloy. J. Alloys Compd. 2015, 622, 738–744. [Google Scholar] [CrossRef]
As | Bi | Fe | Mn | Ni | Pb | P | Sb | Sn | Zn | O |
---|---|---|---|---|---|---|---|---|---|---|
<0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.0021 |
Temp/°C | Strain Rate/s−1 | Lf/mm | df/mm | B |
---|---|---|---|---|
350 °C | 0.01 | 7.17 | 13.92 | 1.08 |
0.1 | 7.12 | 14.00 | 1.07 | |
1 | 7.12 | 13.94 | 1.08 | |
5 | 7.30 | 13.71 | 1.09 | |
450 °C | 0.01 | 6.91 | 14.27 | 1.07 |
0.1 | 9.95 | 14.29 | 1.06 | |
1 | 7.21 | 13.93 | 1.07 | |
5 | 7.21 | 13.93 | 1.07 | |
550 °C | 0.01 | 6.82 | 14.41 | 1.06 |
0.1 | 6.84 | 14.44 | 1.05 | |
1 | 7.10 | 14.18 | 1.05 | |
5 | 6.93 | 14.29 | 1.06 | |
650 °C | 0.01 | 6.82 | 14.31 | 1.07 |
0.1 | 6.78 | 14.47 | 1.06 | |
1 | 6.65 | 14.74 | 1.04 | |
5 | 6.82 | 14.53 | 1.04 | |
750 °C | 0.01 | 6.95 | 14.01 | 1.10 |
0.1 | 6.85 | 14.28 | 1.07 | |
1 | 6.96 | 14.19 | 1.07 | |
5 | 6.70 | 14.34 | 1.09 |
i | Bi | Ci | Di | Ei | Fi |
---|---|---|---|---|---|
0 | −1.18 | −0.144 | 25.7 | −1.67 × 103 | 41.1 |
1 | 52.0 | 4.99 | −2.29 × 102 | 6.11 × 104 | −6.91 × 102 |
2 | −7.04 × 102 | −60.0 | 7.39 × 102 | −7.96 × 105 | 1.25 × 104 |
3 | 5.023 × 103 | 3.81 × 102 | 6.17 × 103 | 5.66 × 106 | −1.18 × 105 |
4 | −2.15 × 104 | −1.41 × 103 | −7.35 × 104 | −2.44 × 107 | 6.49 × 105 |
5 | 5.78 × 104 | 3.13 × 103 | 3.31 × 105 | 6.66 × 107 | −2.20 × 106 |
6 | −9.83 × 104 | −4.07 × 103 | −8.06 × 105 | −1.15 × 108 | 4.63 × 106 |
7 | 1.02 × 105 | 2.78 × 103 | 1.12 × 106 | 1.23 × 108 | −5.93 × 106 |
8 | −5.95 × 104 | −6.44 × 102 | −8.28 × 105 | −7.38 × 107 | 4.21 × 106 |
9 | 1.47 × 104 | −1.19 × 102 | 2.55 × 105 | 1.89 × 107 | −1.27 × 106 |
Strain | Parameters of Unstable Regions | |
---|---|---|
Temp/°C | Strain Rate/s−1 | |
0.2 | 350~415 | 0.09~5 |
400~515 | 0.01~0.09 | |
570~710 | 0.02~1.6 | |
710~750 | 0.65~5 | |
0.4 | 350~635 | 0.03~0.135 |
350~415 | 0.135~5 | |
415~635 | 0.135~0.46 | |
570~730 | 0.46~5 | |
0.6 | 350~407 | 0.01~5 |
407~513 | 0.01~1.39 | |
513~735 | 0.206~5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Wen, M.; Cui, H.; Guo, J.; Wang, C. Hot Deformation Behavior and Processing Maps of Pure Copper during Isothermal Compression. Materials 2023, 16, 3939. https://doi.org/10.3390/ma16113939
Chen T, Wen M, Cui H, Guo J, Wang C. Hot Deformation Behavior and Processing Maps of Pure Copper during Isothermal Compression. Materials. 2023; 16(11):3939. https://doi.org/10.3390/ma16113939
Chicago/Turabian StyleChen, Tiantian, Ming Wen, Hao Cui, Junmei Guo, and Chuanjun Wang. 2023. "Hot Deformation Behavior and Processing Maps of Pure Copper during Isothermal Compression" Materials 16, no. 11: 3939. https://doi.org/10.3390/ma16113939
APA StyleChen, T., Wen, M., Cui, H., Guo, J., & Wang, C. (2023). Hot Deformation Behavior and Processing Maps of Pure Copper during Isothermal Compression. Materials, 16(11), 3939. https://doi.org/10.3390/ma16113939