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Abstract: In this study, pure copper’s hot deformation behavior was studied through isothermal
compression tests at deformation temperatures of 350~750 ◦C with strain rates of 0.01~5 s−1 on a
Gleeble-3500 isothermal simulator. Metallographic observation and microhardness measurement
were carried out of the hot compressed specimens. By analyzing the true stress–strain curves of pure
copper under various deformation conditions during the hot deformation process, the constitutive
equation was established based on the strain-compensated Arrhenius model. On the basis of the
dynamic material model proposed by Prasad, the hot-processing maps were acquired under different
strains. Meanwhile, the effect of deformation temperature and strain rate on the microstructure
characteristics was studied by observing the hot-compressed microstructure. The results demonstrate
that the flow stress of pure copper has positive strain rate sensitivity and negative temperature
correlation. The average hardness value of pure copper has no obvious change trend with the strain
rate. The flow stress can be predicted with excellent accuracy via the Arrhenius model based on
strain compensation. The suitable deforming process parameters for pure copper were determined to
be at a deformation temperature range of 700~750 ◦C and strain rate range of 0.1~1 s−1.

Keywords: isothermal compression; pure copper; flow stress; constitutive model; processing map

1. Introduction

Pure copper is widely used in integrated circuits due to its low resistivity, high electromi-
gration resistance, high thermal conductivity, and corrosion resistance. In the manufacturing
process of modern integrated circuits, sputtering is the main method of film formation. Com-
pared with vacuum evaporation coating, it has the advantages of high energy of sputtered
particles, high compactness, and high controllability of film quality [1]. Therefore, with the
development of integrated circuits, the demand for thin film material is booming, which
also leads to strict requirements for various properties of sputtering targets. At present,
ultra-high purity copper target is the key raw material for sputtering of copper interconnects
seed layer and packaging application [2]. High-quality sputtered films could be obtained
by well-controlled microstructure and crystallographic texture of sputtering targets, which
are determined by the working process. Hot deformation, including as hot forging and hot
rolling, are essential for achieving regulated grain size and texture. These techniques may
also be used to seal pore or void defects that were originally present in the as-cast ingot. To
accurately describe the impact of process variables, such as temperature, deformation degree,
and strain rate, on the flow stress as well as to provide a solid foundation for the processing
technology of pure copper target, it is crucial to study the hot deformation behavior of pure
copper. There are some reports on pure copper’s hot deformation behavior. At temperatures
ranging from 523 to 773 K and strain rates of 10−4~10−1 s−1, Gao et al. [3] investigated the hot
deformation behavior and associated structure changes of polycrystalline copper with various
purities. The activation energy was measured to be between 210 and 245 kJ/mol. At the
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deformation temperatures between 843 and 993 K and strain rates between 10−3 and 10 s−1,
Yang et al. [4] studied the hot compression behavior of pure copper. The activation energy
was 215 kJ/mol, showing a lattice-diffusion-controlled plastic flow behavior. At temperatures
between 400 and 900 ◦C and strain rates between 0.001 and 1 s−1, Huang et al. [5] studied the
strain-hardening and -softening behaviors of pure copper. The flow instability occurred in the
zones of 400–450 ◦C, 0.001–0.05 s−1, and 450–750 ◦C, 0.05–1 s−1. However, the evolution of
microstructure and hardness during hot compression deformation is rarely studied.

In this study, pure copper was subjected to isothermal compression tests at various
deformation temperatures and strain rates. Both the constitutive equation and the hot-
processing maps were established. In the meantime, the impact of deformation temperature
and strain rate on the evolution of the microstructure, hardness, and plastic deformation
was examined. The parameters of the deforming process were then optimized.

2. Materials and Methods

The raw material for this study was 4N purity pure copper. Table 1 displays the
impurity content of the raw material as determined by ICP-MS. Figure 1 illustrates the
optical microstructure of pristine sample of pure copper.

Table 1. The contents of impurities in copper specimens (wt%).

As Bi Fe Mn Ni Pb P Sb Sn Zn O

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0021
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Figure 1. Initial microstructure of pristine sample of pure copper.

Hot compression experiments were performed on a Gleeble-3500 thermal-mechanical
simulator using machined cylindrical specimens with a diameter of 10 mm and a height of
15 mm that were extracted from a forged stock. Figure 2 schematically shows the experi-
mental process for hot compression testing and specific parameters. To guarantee uniform
temperature distributions inside, the specimens were heated to the preset deformation
temperature at a rate of 5 ◦C/s and held there for 5 min before deformation. After isother-
mal compression, the specimens were promptly quenched by cooled water to preserve the
high-temperature microstructure for examination.

After deformation, the specimens were cut along the center plane in the compression
direction. Optical observation specimens were prepared by etching the observation area
with etching solution (5 g ferric chloride, 10 mL hydrochloric acid, and 82 mL absolute
ethanol) after standard metallographic operations by a Struers Tegramin-25 device. The
longitudinal section’s middle was chosen as the observation location to lessen the impact
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of uneven deformation [6]. Optical microstructure was observed by a laser confocal micro-
scope (ZEISS Smartproof 5). According to ASTM E112-12, the Abrams three-circle approach
was utilized to determine the specimens grain size [7]. Vickers hardness measurements
were performed with a 0.1 kg force applied for 10 s using a microhardness tester Shanghai
Baoleng HXD-1000TMC/LCD).
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Figure 2. Schematic diagram of hot compression tests and specimen morphology.

The interface friction between specimen and dies would have an impact on the sym-
metrical deformation of the specimen [8–10]. Despite the experiment’s use of lubricants
to lessen interfacial friction, the cylindrical specimens nevertheless had a barrel-shaped
appearance or bulged. The contact area between the specimen and dies grows as the tem-
perature and degree of deformation rise, and the interface friction becomes more and more
visible, resulting in increasingly uneven deformation of the specimen. Therefore, in order
to measure the effectiveness of the unidirectional hot compression test, when the bulge
occurs at the waist of the specimen after the hot compression test, the bugle coefficient,
B, can be provided to evaluate the correctness of the flow stress curve produced during
experimentation [11]. The change in specimen size before and after deformation, which
could be assessed using the following expression, is used to determine B:

B = L0d2
0/L f d2

f (1)

where L0 and Lf denote the heights of the un-deformed (15 mm) and deformed specimens,
respectively. d0 and df are the diameters of the un-deformed (10 mm) and deformed
specimens, respectively.

When B is more than 0.9, the results of unidirectional hot compression test are effective [11].
As shown in Table 2, the bugle coefficients under different deformation conditions are more
than 0.9, indicating the validity of the stress–strain curves produced from all the specimens.

Table 2. The value of B for specimens of pure copper under various deformation conditions.

Temp/◦C Strain Rate/s−1 Lf/mm df/mm B

350 ◦C

0.01 7.17 13.92 1.08
0.1 7.12 14.00 1.07
1 7.12 13.94 1.08
5 7.30 13.71 1.09

450 ◦C

0.01 6.91 14.27 1.07
0.1 9.95 14.29 1.06
1 7.21 13.93 1.07
5 7.21 13.93 1.07
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Table 2. Cont.

Temp/◦C Strain Rate/s−1 Lf/mm df/mm B

550 ◦C

0.01 6.82 14.41 1.06
0.1 6.84 14.44 1.05
1 7.10 14.18 1.05
5 6.93 14.29 1.06

650 ◦C

0.01 6.82 14.31 1.07
0.1 6.78 14.47 1.06
1 6.65 14.74 1.04
5 6.82 14.53 1.04

750 ◦C

0.01 6.95 14.01 1.10
0.1 6.85 14.28 1.07
1 6.96 14.19 1.07
5 6.70 14.34 1.09

3. Results
3.1. True Stress–Strain Curves

Figure 3 displays the true stress–strain curves of pure copper obtained from hot
compression testing. The flow stress of pure copper exhibits a negative temperature
correlation and a positive strain rate sensitivity, which is evident from the observation
that the flow stress increases with decreasing deformation temperature as well as rising
strain rate. The material during hot deformation undergoes a combination action of work
hardening and dynamic softening [12,13]. Figure 3 shows that the flow stress rises with
the increasing strain, while the growth trend slows down gradually. The flow stress
steadily reduces after reaching its peak and eventually tends to stabilize. The curves of
flow stress that keep increasing with increasing strain belong to a dynamic recovery type
one. Additionally, as deformation increases, dynamic recrystallization type one occurs,
where the flow stress first rises and then falls. During the initial stage, that is, prior
to the peak point, the dynamic recovery effects cannot completely counteract the work
hardening effects. Because its effects are dominant, the flow stress increases rapidly. The
dislocation density also rises as the degree of deformation increases. A significant number
of dislocations are removed when dynamic recrystallization takes place under a specific
critical deformation condition. Due to the dominant recrystallization softening, the flow
stress starts to decrease, and the peak stress point appears. Subsequently, the effects of
hardening and softening tend to balance, and the curves become more and more smooth.
Moreover, the flow stress tends to enter a stable phase at low rates and high temperatures,
which is characterized by dynamic flow softening.
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Figure 3. True stress–strain curves of pure copper under various deformation conditions: (a) έ = 0.01 s−1;
(b) έ = 0.1 s−1; (c) έ = 1 s−1; (d) έ = 5 s−1.

3.1.1. Microstructure Evolution

Optical microstructure characterization of compressed samples with various deforma-
tion parameters was carried out to evaluate the evolution of pure copper’s microstructure
under hot deformation (Figures 4 and 5). The original structure is replaced by fine re-
crystallized grains with an average grain size of 36.6 m when the strain rate is 5 s−1 in
Figure 4a. The amount of time needed for the specimen to deform to the same degree
increases as the strain rate decreases. Dynamic recovery and dynamic recrystallization
are entirely accomplished. Thus, the grains have enough time to grow, and the average
grain size increases, as shown in Figure 4b–d. When the strain rate decreases to 1 s−1, the
average grain size reaches 64.8 µm. From Figure 4d, pure copper is fully recrystallized at
an elevated temperature of 750 ◦C, and its grain size reaches 110.1 µm.
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Figure 5. Optical micrographs of pure copper at the same strain rate of 0.01 s−1 with various
temperatures: (a) T = 350 ◦C; (b) T = 450 ◦C; (c) T = 550 ◦C; (d) T = 650 ◦C; (e) T = 750 ◦C.

Figure 5a–e display the optical micrographs taken at various temperatures with a
strain rate of 0.01 s−1. Figure 5a displays that at 350 ◦C, the grains of pure copper present
the deformation state after compression. The grain boundaries are blurred, and the grains
show a clearly stripped shape. Under this condition, the isothermal hot compression
of pure copper shows dynamic recovery characteristics. When the temperature rises to
450 ◦C, that is, it is above the theoretical recrystallization temperature, obvious dynamic
recrystallization occurs in pure copper. In Figure 5b, the grain boundaries present a
sawtooth shape, with fine dynamic recrystallized grains. According to Figure 5c,d, with the
increase of deformation temperature, full recrystallization is achieved, and the recrystallized
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grains grow continuously, even with uneven distribution and abnormal growth. This is
because as the temperature increases, the energy provided for dynamic recrystallization is
more abundant. It provides a better environment for the growth of recrystallized grains
and enhances the migration of grain boundaries; thus, the grain size gradually increases.

3.1.2. Microhardness Analysis

It is commonly acknowledged that the mechanical properties of the material are greatly
influenced by its microstructure [14]. The evolution of the microstructure can also be re-
flected in the hardness change that occurs under various deformation conditions. Figure 6
displays the relation between deformation conditions and Vickers hardness at the center of
the longitudinal section of the specimen. Vickers hardness typically decreases as the defor-
mation temperature rises, and the hardness value is more uniform at high temperatures.
The hardness trend is not apparent as the strain rate increases. The increase in temperature
is conducive to the migration of grain boundaries as well as the movement of dislocations
and promotes the softening effects; thus, the hardness reduces. In addition, elevating
the temperature increases the grain size. According to the Hall–Petch relationship, larger
grain size will lead to the reduction of hardness. As for the non-uniformity of hardness
value, the unstable hardness value is due to the incomplete dynamic recrystallization at
low temperature, resulting in a big variation in grain size and hardness values in different
regions [15]. High-density dislocations are easy to produce as the strain rate rises, but
there is not enough time for dynamic recovery or recrystallization softening; therefore,
the hardness is high. On the other hand, when the deformation rate is large, the coarse
and fine grains are staggered relative to one another. The hardness difference between
coarse grain and fine grain is obvious. When the hardness points are randomly selected,
the average hardness value decreases. Therefore, there is no discernible pattern in how
strain rate affects hardness when these two factors interact.
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ln𝐴 +

𝑄

𝑛𝑅𝑇
 (8) 
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Figure 6. Vickers hardness of pure copper at different hot compression conditions.

3.2. Establishment and Modification of Constitutive Models of Pure Copper
3.2.1. Subsubsection

The relationship between strain rate, deformation temperature, and flow stress at high
deformation temperature is commonly described using the Arrhenius model [16,17]. It can
characterize the features of the stress–strain curve that increases initially before dropping.
This model is usually denoted by the following three equations:

.
ε = A[sinh(ασ)]n exp

(
− Q

RT

)
(for all ασ) (2)

.
ε = A1σn1exp

(
− Q

RT

)
(ασ < 0.8) (3)
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.
ε = A2exp(βσ)exp

(
− Q

RT

)
(ασ > 1.2) (4)

where
.
ε is the strain rate (s−1). σ is the flow stress (MPa). R is the universal gas constant

(8.3145 J·mol−1·K−1). T is the absolute temperature (K). Q is the activation energy of
hot deformation (J·mol−1). A, A1, A2, α, n, n1, and β are the material constants, and
α = β/n1 [18,19].

Taking the logarithms of the two sides of Equations (2)–(4), respectively, gives:

ln
.
ε = ln A + nln[sinh(ασ)]− Q

RT (5)

ln
.
ε = ln A1 + n1ln σ − Q

RT (6)

ln
.
ε = ln A2 + βσ − Q

RT (7)

In Figure 7a,b, by linear fitting the ln
.
ε − ln σ and ln

.
ε − σ, and computing the slope

value of each fitting curve, n1 and β are obtained as 7.3964 and 0.1282, respectively. Then,
the value of α can be calculated as 0.01733 MPa−1.

Materials 2023, 16, 3939 9 of 18 
 

 

𝑄 = 𝑅 [
𝜕 ln 𝜀̇

𝜕 ln[sinh(𝛼𝜎)]
]
𝑇

[
𝜕 ln[sinh(𝛼𝜎)]

𝜕(1 𝑇⁄ )
]
�̇�

 (9) 

The relationships among ln 𝜀̇ − ln[sinh(𝛼𝜎)]  and ln[sinh(𝛼𝜎)] − 1 𝑇⁄   are gained as 

in Figure 7c,d. According to Equation (9), the thermal activation energy, 𝑄, of pure copper 

is 202.10 KJ/mol. 

  

  

Figure 7. Relationships between: (a) lnέ and lnσ; (b) lnέ and σ; (c) lnέ-ln[sinh(ασ)]; (d) 1/Τ-

ln(sinh(ασ)). 

Zener and Hollomon [20] proposed Z-parameter to elaborate the effect of defor-

mation temperature and strain rate on flow stress. Z-parameter is given as: 

𝑍 = 𝜀̇exp (
𝑄

𝑅𝑇
)  (10) 

According to Equations (2) and (10), Z-parameter can also be represented as follows: 

𝑍 = 𝐴[sinh(𝛼𝜎)]𝑛  (11) 

Taking the logarithm of both sides of Equation (11), gives:  

ln 𝑍 = ln𝐴 + 𝑛 ln[sinh(𝛼𝜎)].  (12) 

By substituting the Q value into Equation (12) and drawing the ln 𝑍 − ln[sinh(𝛼𝜎)] 

plot, the relation between ln 𝑍 and ln[sinh(𝛼𝜎)] can be obtained, as shown in Figure 8. 

Through linearly fitting these data, the value of ln 𝐴 and n can be derived as 21.8026 and 

4.8248. 

As a result, the constitutive equation of pure copper during hot deformation can be 

designated as: 
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Equation (4) can be converted into:

ln[sinh(ασ)]= 1
n ln

.
ε − 1

n ln A + Q
nRT (8)

Through the analysis of ln[sinh(ασ)]− ln
.
ε, as shown in Figure 7c, the value of n can

be derived as 4.8906 from the slopes.
Differentiating Equation (5) gives:

Q = R
[

∂ln
.
ε

∂ln[sinh(ασ)]

]
T

[
∂ln[sinh(ασ)]

∂(1/T)

]
.
ε

(9)
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The relationships among ln
.
ε − ln[sinh(ασ)] and ln[sinh(ασ)]− 1/T are gained as in

Figure 7c,d. According to Equation (9), the thermal activation energy, Q, of pure copper is
202.10 KJ/mol.

Zener and Hollomon [20] proposed Z-parameter to elaborate the effect of deformation
temperature and strain rate on flow stress. Z-parameter is given as:

Z =
.
εexp

(
Q
RT

)
(10)

According to Equations (2) and (10), Z-parameter can also be represented as follows:

Z = A[sinh(ασ)]n (11)

Taking the logarithm of both sides of Equation (11), gives:

ln Z = ln A + nln[sinh(ασ)]. (12)

By substituting the Q value into Equation (12) and drawing the ln Z − ln[sinh(ασ)] plot,
the relation between ln Z and ln[sinh(ασ)] can be obtained, as shown in Figure 8. Through
linearly fitting these data, the value of ln A and n can be derived as 21.8026 and 4.8248.
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As a result, the constitutive equation of pure copper during hot deformation can be
designated as:

.
ε = e21.8026[sinh(0.01733σ)]4.8248exp

(
− 202.10×103

RT

)
(13)

The above formula can be converted to:

σ = 1
0.01733 ln

( .
εexp(202100/RT)

e21.8026

) 1
4.8248

+

[( .
εexp(202100/RT)

e21.8026

) 2
4.8248

+ 1

]1/2
 (14)

3.2.2. Strain-Compensated Arrhenius Constitutive Model

From Figure 3, the flow stress values under different strains are quite different. There-
fore, the strain has a considerable impact on the material constants, and the relationship
between the material constants and strain can be explained using the polynomial fitting
method. The relationship between β, α, n, Q, and ln A can be fitted by strain:
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β = B0 + B1ε + B2ε2 + B3ε3 + B4ε4 + B5ε5 + B6ε6 + B7ε7 + B8ε8 + B9ε9

α = C0 + C1ε + C2ε2 + C3ε3 + C4ε4 + C5ε5 + C6ε6 + C7ε7 + C8ε8 + C8ε8

n = D0 + D1ε + D2ε2 + D3ε3 + D4ε4 + D5ε5 + D6ε6 + D7ε7 + D8ε8 + D9ε9

Q = E0 + E1ε + E2ε2 + E3ε3 + E4ε4 + E5ε5 + E6ε6 + E7ε7 + E8ε8 + E9ε9

ln A = F0 + F1ε + F2ε2 + F3ε3 + F4ε4 + F5ε5 + F6ε6 + F7ε7 + F8ε8 + F9ε9

(15)

Therefore, the strain compensated Arrhenius constitutive equation can be represented as:

σ = 1
α(ε)

ln


(

.
εexp

[
Q(ε)
RT

]
A(ε)

)1/n(ε)

+

( .
εexp

[
Q(ε)
RT

]
A(ε)

)2/n(ε)

+ 1

1/2
 (16)

The material constants under various strains were determined within the range of
0.1~0.7, and the interval is 0.1 using the methods given above. Figure 9 illustrates the
relationship between material constants and strain obtained by a ninth order polynomial
fitting. The polynomial coefficients of material constants of pure copper are shown in
Table 3.
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Table 3. Coefficient values of the fitting relationship between the parameters and the strain.

i Bi Ci Di Ei Fi

0 −1.18 −0.144 25.7 −1.67 × 103 41.1
1 52.0 4.99 −2.29 × 102 6.11 × 104 −6.91 × 102

2 −7.04 × 102 −60.0 7.39 × 102 −7.96 × 105 1.25 × 104

3 5.023 × 103 3.81 × 102 6.17 × 103 5.66 × 106 −1.18 × 105

4 −2.15 × 104 −1.41 × 103 −7.35 × 104 −2.44 × 107 6.49 × 105

5 5.78 × 104 3.13 × 103 3.31 × 105 6.66 × 107 −2.20 × 106

6 −9.83 × 104 −4.07 × 103 −8.06 × 105 −1.15 × 108 4.63 × 106

7 1.02 × 105 2.78 × 103 1.12 × 106 1.23 × 108 −5.93 × 106

8 −5.95 × 104 −6.44 × 102 −8.28 × 105 −7.38 × 107 4.21 × 106

9 1.47 × 104 −1.19 × 102 2.55 × 105 1.89 × 107 −1.27 × 106

3.2.3. Prediction Accuracy Evaluation

The comparison between the experimental and predicted data for the strain-compensated
Arrhenius constitutive model is shown in Figure 10. In addition, the predicted result and
the experimental one are in good agreement The correlation coefficient (R) and average
absolute relative error (AARE) are added to further confirm the prediction precision of
the constructed constitutive model of pure copper. The following are the corresponding
expressions of R and AARE:

R =
∑n

i=1(Ei−E)(Pi−P)√
∑n

i=1(Ei−E)
2
√

∑n
i=1(Pi−P)

2 (17)

AARE = 1
n

n
∑

i=1

∣∣∣ Ei−Pi
Ei

∣∣∣× 100% (18)

where n is the number of the data points, Ei is the experimental flow stress, Pi is the
predicted flow stress, E and P are the mean values of Ei and Pi. Figure 11 illustrates
the relevance between the predicted and experimental values under various deformation
conditions. The R value and AARE value of the strain-compensated Arrhenius model is
0.9763 and 10.5%, respectively. In conclusion, the established strain-compensated Arrhenius
constitutive equation has high accuracy in predicting flow stress.
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3.3. Hot-Processing Maps of Pure Copper
3.3.1. Construction and Analysis of Hot-Processing Maps

The dynamic material model (DMM), which combines physical system modeling and
irreversible thermodynamic theory, is based on the basic concepts of continuum mechanics
with massive plastic deformation [21]. The processing map of DMM can not only describe
microstructure evolution but also distinguish the instability region during hot forming.
According to the dissipative structure theory, the total energy, P, dissipated into the system
is able to be separated into two components and expressed as:

P = σ· .
ε = G + J =

∫ .
ε

0 σd
.
ε +
∫ σ

0
.
εdσ (19)

where G is the energy required for plastic deformation. J is the energy dissipated during
structural deformation. The strain rate sensitivity parameter, m, of the material under a
specific stress determines the distribution between G and J. Thus, m can be described as:

m = ∂J
∂G =

.
ε∂σ
σ∂

.
ε
= ∂ln σ

∂ln
.
ε
. (20)

When m = 1, it is the state of linear dissipation, and the value J reaches the maximum:

Jmax = P
2 = σ· .

ε
2 . (21)

Only the strain rate influences the flow stress when temperature and strain are constant,
as shown by the following expression:

σ = A· .
ε

m. (22)

Moreover, J can be described as:

J =
∫ σ

0
.
εdσ =

∫ σ
0

(
σ
A
) 1

m dσ = 1
A1/m

σ(1/m+1)

(1/m+1) =
.
ε·σ·m
m+1 . (23)

The efficiency of energy dissipation (η), which describes the percentage of energy
dissipated during structural transformation, is shown as follows:

η = J
Jmax

= 2m
m+1 . (24)

The maximal entropy production principle put forward by Zeigler served as the
foundation for the instability criterion given by Prasad et al. [22,23]. In light of this, the
Prasad criterion is given as follows:

ξ
( .
ε
)
=

∂ln( m
m+1 )

∂ln
.
ε

+ m < 0. (25)
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According to the flow stress under various deformation circumstances, the efficiencies
of energy dissipation (η) and plastic flow instability parameters (ξ) at the strain of 0.2, 0.4,
and 0.6 were calculated, respectively. In Figure 12 the shadings represent the areas of flow
instability with negative values of ξ, and the contour lines represent the effectiveness of energy
dissipation. Moreover, the larger value of η indicates that the microstructure has uniform and
equiaxed grains, which improves a better hot workability [24,25]. It is evident that the energy
dissipation efficiency increases as deformation temperature rises and strain rate falls. The
instability zones tend to gradually grow as the strain increases. Table 4 summarizes the range
of process parameters corresponding to the unstable regions under different strain conditions,
which should be avoided when selecting hot-working parameters.
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Table 4. Range of parameters of unstable regions with different strain conditions.

Strain
Parameters of Unstable Regions

Temp/◦C Strain Rate/s−1

0.2

350~415 0.09~5
400~515 0.01~0.09
570~710 0.02~1.6
710~750 0.65~5

0.4

350~635 0.03~0.135
350~415 0.135~5
415~635 0.135~0.46
570~730 0.46~5

0.6
350~407 0.01~5
407~513 0.01~1.39
513~735 0.206~5
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Figure 12a demonstrates that the instability zone is generally dispersed at the strain
of 0.2 and that as temperature rises, energy dissipation efficiency increases. It reaches the
peak value in the region within temperature of 625~680 ◦C and strain rate of 0.01~0.02 s−1,
and the peak efficiency is 45%, indicating that this region is the optimal processing region
of materials when the strain is 0.2. From Figure 12c, when the strain is 0.6, the material
has two processing safety regions, and the safety area and instability area are X-shaped,
indicating that temperature and strain rate affect the processing characteristics. The energy
dissipation efficiency in the region of low temperature and high-strain rate is low, and its
value is 11%, indicating that the energy dissipation efficiency achieves its maximum in the
zone of high temperature and low-strain rate, with strain rate ranging from 0.01 to 0.2 s−1.
Therefore, when the strain is 0.6, the suitable processing window for pure copper is at the
temperature range of 540~750 ◦C and strain rate range of 0.01~0.206 s−1.

In Figure 12, with increasing strain, the safety area can be transformed into the instability
area and vice versa. Thus, the processing map established under a single strain cannot
comprehensively and accurately determine the instability area and safety area in the whole
hot compression process. It is essential to take into account the processing maps under various
strains to guarantee the continuity of the hot-working process and the correctness of the
instability area and safety area. To get the processing map of pure copper throughout the
entire hot compression process, the processing maps with strains of 0.2, 0.4, and 0.6 were
superimposed. There are just three safety regions, as seen in Figure 13, and the majority of the
overlay processing maps are covered by instability areas: (1) safety region I: temperature range
420~510 ◦C; strain rate range 0.85~5 s−1; energy dissipation efficiency 11%; (2) safety region II:
temperature range 650~750 ◦C; strain rate range 0.01~0.018 s−1; energy dissipation efficiency
24%; (3) safety region III: temperature range 700~750 ◦C; strain rate range 0.01~1 s−1; energy
dissipation efficiency 31%. To optimize the hot-deforming parameters of material, not only the
safety area with high-power dissipation efficiency should be selected, but also the realizability
of deformation conditions in the actual production process should be considered. Based on the
above analysis, the safety area I is abandoned because of the low-energy dissipation efficiency,
which increases the probability of flow instability. The safety area II is abandoned because
the range of strain rate in this area is too narrow and the rate is very low, which is difficult to
achieve in actual production.
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3.3.2. Optimal Process Interval Analysis

The optical micrographs taken at various deformation conditions in domains A, B, C,
and D are represented in Figure 14a–d, respectively. Figure 14a shows the microstructure of
pure copper in domain A at 350 ◦C and strain rate of 5 s−1, which is in the plastic instability
region. In this area, it is seen that there is a banded structure inside or between the grains; this
means that the microstructure exhibits the traits of local flow instability at high-strain rates
and low temperatures. Domain B is undergoing deformation at a temperature of 450 ◦C and
a strain rate of 0.1 s−1. From Figure 14b, it appears that the instability degree is weakened,
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and the microstructure distribution is inhomogeneous. Only a small amount of dynamic
recrystallization takes place with very tiny recrystallization grains. Figure 14c shows the
microstructure in domain C when the deformation condition is 750 ◦C and 0.01 s−1. It is
clear that dynamic recrystallization entirely takes place and that the recrystallized grains
become coarser. This is due to the fact that dynamic recrystallization is encouraged by high
temperature, and the recrystallized grains have time to grow at a low-strain rate, which leads
to microstructure coarsening. Figure 14d shows the microstructure in domain D at 750 ◦C
and 1 s−1 deformation parameter. With an average grain size of 53 µm, the central region is
mainly composed of uniformly sized, equiaxed crystals. According to the processing map,
the energy dissipation efficiency in this area is high and close to the peak value, indicating
that the processing parameters can ensure that a high proportion of energy would be used for
the microstructure evolution. Thus, this area’s processing parameters are suitable for actual
production. Therefore, the preferred hot deformation condition of pure copper should be
within the temperature range of 700~750 ◦C and strain rate range of 0.01~1 s−1.
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Figure 14. Optical micrographs of pure copper under various compression conditions: (a) T = 350 ◦C,
έ = 5 s−1; (b) T = 450 ◦C, έ = 0.1 s−1; (c) T = 750 ◦C, έ = 0.01 s−1; (d) T = 750 ◦C, έ = 1 s−1.

4. Conclusions

Based on hot compression testing, constitutive equations and processing maps of pure
copper were constructed. The effects of deformation conditions on the flow behavior and
microstructure evolution of pure copper were analyzed. The conclusions that can be made
are as follows:

(1) Pure copper features a flow stress that is negatively correlated with temperature and
positively sensitive to strain rate. With an increase in deformation temperature and a
decrease in strain rate, pure copper’s average grain size grows. The average hardness
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value of pure copper declines with rising temperature but has no obvious change
trend with the strain rate.

(2) The constitutive equation for pure copper was established via the strain-compensated
Arrhenius model. The value of the correlation coefficient and the average absolute
relative error values were 0.9763 and 10.5%, respectively, showing great accuracy in
predicting flow stress, which can provide a reference for practical production and
numerical simulation.

(3) Based on the DMM model, the hot-processing maps were constructed. The suitable
processing window of pure copper was determined at the temperature range of
700~750 ◦C and strain rate range of 0.1~1 s−1.
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