Study on OH Radical Production Depending on the Pulse Characteristics in an Atmospheric-Pressure Nanosecond-Pulsed Plasma Jet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Emission Spectroscopy
2.2. Computational Chemical Simulation
3. Results and Discussions
3.1. Optical Emission Spectroscopy Results
3.2. Chemical Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conrads, H.; Schmidt, M. Plasma Generation and Plasma Sources. Plasma Sources Sci. Technol. 2000, 9, 441–454. [Google Scholar] [CrossRef]
- Chapman, B. Glow Discharge Processes: Sputtering and Plasma Etching; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials; Wiley: New York, NY, USA, 2005; ISBN 9786468600. [Google Scholar]
- Kushner, M.J. A Kinetic Study of the Plasma-Etching Process. II. Probe Measurements of Electron Properties in an Rf Plasma-Etching Reactor. J. Appl. Phys. 1982, 53, 2939–2946. [Google Scholar] [CrossRef]
- Godyak, V.A.; Piejak, R.B. Abnormally Low Electron Energy and Heating-Mode Transition in a Low-Pressure Argon Rf Discharge at 13.56 MHz. Phys. Rev. Lett. 1990, 65, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Vender, D.; Boswell, R.W. Numerical Modeling of Low-Pressure RF Plasmas. IEEE Trans. Plasma Sci. 1990, 18, 725–732. [Google Scholar] [CrossRef]
- Lee, J.J.; Kim, S.J.; Lee, Y.S.; Cho, C.H.; Choi, M.S.; Seong, I.H.; Lee, S.H.; Jeong, W.N.; You, S.J. Experimental Study of Argon and Helium Dielectric Barrier Discharge with Coplanar Electrodes at Intermediate Pressure for Reducing Radar Cross Section. Appl. Sci. Converg. Technol. 2020, 29, 170–175. [Google Scholar] [CrossRef]
- Seong, I.H.; Lee, J.J.; Cho, C.H.; Lee, Y.S.; Kim, S.J.; You, S.J. Characterization of SiO2 Over Poly-Si Mask Etching in Ar/C4F8 Capacitively Coupled Plasma. Appl. Sci. Converg. Technol. 2021, 30, 176–182. [Google Scholar] [CrossRef]
- Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric Pressure Plasmas: A Review. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 2–30. [Google Scholar] [CrossRef]
- Nehra, V.; Kumar, A.; Dwivedi, H.K. Atmospheric Non-Thermal Plasma Sources. Int. J. Eng. 2008, 2, 53–68. [Google Scholar]
- Dobrynin, D.; Fridman, G.; Friedman, G.; Fridman, A. Physical and Biological Mechanisms of Direct Plasma Interaction with Living Tissue. New J. Phys. 2009, 11, 115020. [Google Scholar] [CrossRef]
- Lloyd, G.; Friedman, G.; Jafri, S.; Schultz, G.; Fridman, A.; Harding, K. Gas Plasma: Medical Uses and Developments in Wound Care. Plasma Process. Polym. 2010, 7, 194–211. [Google Scholar] [CrossRef]
- Fridman, G.; Peddinghaus, M.; Ayan, H.; Fridman, A.; Balasubramanian, M.; Gutsol, A.; Brooks, A.; Friedman, G. Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air. Plasma Chem. Plasma Process. 2006, 26, 425–442. [Google Scholar] [CrossRef]
- Ling, L.; Jiafeng, J.; Jiangang, L.; Minchong, S.; Xin, H.; Hanliang, S.; Yuanhua, D. Effects of Cold Plasma Treatment on Seed Germination and Seedling Growth of Soybean. Sci. Rep. 2014, 4, 5859. [Google Scholar] [CrossRef]
- Schutze, A.; Jeong, J.Y.; Babayan, S.E.; Park, J.; Selwyn, G.S.; Hicks, R.F. The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources. Plasma Sci. IEEE Trans. 1998, 26, 1685–1694. [Google Scholar] [CrossRef]
- Lu, X.; Laroussi, M.; Puech, V. On Atmospheric-Pressure Non-Equilibrium Plasma Jets and Plasma Bullets. Plasma Sources Sci. Technol. 2012, 21, 034005. [Google Scholar] [CrossRef]
- Jiang, N.; Ji, A.; Cao, Z. Atmospheric Pressure Plasma Jet: Effect of Electrode Configuration, Discharge Behavior, and Its Formation Mechanism. J. Appl. Phys. 2009, 106, 013308. [Google Scholar] [CrossRef]
- Shrestha, R.; Gurung, J.P.; Subedi, D.P.; Wong, C.S. Atmospheric Pressure Single Electrode Argon Plasma Jet for Biomedical Applications. Int. J. Emerg. Technol. Adv. Eng. 2015, 5, 193–198. [Google Scholar]
- Lu, X.; Jiang, Z.; Xiong, Q.; Tang, Z.; Pan, Y. A Single Electrode Room-Temperature Plasma Jet Device for Biomedical Applications. Appl. Phys. Lett. 2008, 92, 151504. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Zhou, R.; Song, Y.; Sun, Y.; Zhang, Q.; Niu, J.; Fan, H.; Yang, S. Atmospheric Cold Plasma Jet for Plant Disease Treatment. Appl. Phys. Lett. 2014, 104, 043702. [Google Scholar] [CrossRef]
- Baik, K.Y.; Kang, H.L.; Kim, J.; Park, S.Y.; Bang, J.Y.; Uhm, H.S.; Choi, E.H.; Cho, G. Non-Thermal Plasma Jet without Electrical Shock for Biomedical Applications. Appl. Phys. Lett. 2013, 103, 164101. [Google Scholar] [CrossRef]
- Boselli, M.; Colombo, V.; Gherardi, M.; Laurita, R.; Liguori, A.; Sanibondi, P.; Simoncelli, E.; Stancampiano, A. Characterization of a Cold Atmospheric Pressure Plasma Jet Device Driven by Nanosecond Voltage Pulses. IEEE Trans. Plasma Sci. 2015, 43, 713–725. [Google Scholar] [CrossRef]
- Lomaev, M.I. Determination of Energy Input in Barrier Discharge Excilamps. Atmos. Ocean. Opt. 2001, 14, 1005–1008. [Google Scholar]
- Wen, F.; Lo, Y.-L.; Lin, C.-H.; Mou, S.-C. A Pulse DC Plasma Deposited Resistor Process. Mater. Sci. Forum 2006, 505–507, 865–870. [Google Scholar] [CrossRef]
- Kanazawa, S.; Kawano, H.; Watanabe, S.; Furuki, T.; Akamine, S.; Ichiki, R.; Ohkubo, T.; Kocik, M.; Mizeraczyk, J. Observation of OH Radicals Produced by Pulsed Discharges on the Surface of a Liquid. Plasma Sources Sci. Technol. 2011, 20, 034010. [Google Scholar] [CrossRef]
- Pei, X.; Lu, Y.; Wu, S.; Xiong, Q.; Lu, X. A Study on the Temporally and Spatially Resolved OH Radical Distribution of a Room-Temperature Atmospheric-Pressure Plasma Jet by Laser-Induced Fluorescence Imaging. Plasma Sources Sci. Technol. 2013, 22, 025023. [Google Scholar] [CrossRef]
- Pei, X.; Wu, S.; Xian, Y.; Lu, X.; Pan, Y. On OH Density of an Atmospheric Pressure Plasma Jet by Laser-Induced Fluorescence. IEEE Trans. Plasma Sci. 2014, 42, 1206–1210. [Google Scholar] [CrossRef]
- Liu, X.Y.; Pei, X.K.; Ostrikov, K.; Lu, X.P.; Liu, D.W. The Production Mechanisms of OH Radicals in a Pulsed Direct Current Plasma Jet. Phys. Plasmas 2014, 21, 2–8. [Google Scholar] [CrossRef]
- Shin, D.N.; Park, C.W.; Hahn, J.W. Detection of OH and O Emission Spectrum Generated in a Pulsed Corona Plasma. Bull. Korean Chem. Soc. 2000, 21, 228–232. [Google Scholar]
- Ono, R.; Nakagawa, Y.; Oda, T. Effect of Pulse Width on the Production of Radicals and Excited Species in a Pulsed Positive Corona Discharge. J. Phys. D Appl. Phys. 2011, 44, 485201. [Google Scholar] [CrossRef]
- K.W.TECH Co., Ltd. Reaction Design CHEMKIN Theory Manual; K.W.TECH Co., Ltd.: Seoul, Republic of Korea, 2013. [Google Scholar]
- Meeks, E.; Larson, R.S.; Ho, P.; Apblett, C.; Han, S.M.; Edelberg, E.; Aydil, E.S. Modeling of SiO2 Deposition in High Density Plasma Reactors and Comparisons of Model Predictions with Experimental Measurements. J. Vac. Sci. Technol. A Vac. Surf. Film. 1998, 16, 544–563. [Google Scholar] [CrossRef]
- Itikawa, Y.; Ichimura, A.; Onda, K.; Sakimoto, K.; Takayanagi, K. Cross Sections for Collisions of Electrons and Photons with Oxygen Molecules. J. Phys. Chem. Ref. Data 1989, 18, 23–42. [Google Scholar] [CrossRef]
- Itikawa, Y.; Ichimura, A. Cross Sections for Collisions of Electrons and Photons with Atomic Oxygen. J. Phys. Chem. Ref. Data 1990, 19, 637–651. [Google Scholar] [CrossRef]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Hampson, R.F.; Kerr, J.A.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement IV. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. J. Phys. Chem. Ref. Data 1989, 18, 881–1097. [Google Scholar] [CrossRef]
- Miller, J.A.; Melius, C.F. Kinetic and Thermodynamic Issues in the Formation of Aromatic Compounds in Flames of Aliphatic Fuels. Combust. Flame 1992, 91, 21–39. [Google Scholar] [CrossRef]
- Phelps, A.V. Collisions of H+, H2+, H3+, ArH+, H−, H, and H2 with Ar and of Ar+ and ArH+ with H2 for Energies from 0.1 EV to 10 KeV. J. Phys. Chem. Ref. Data 1992, 21, 883–897. [Google Scholar] [CrossRef]
- Meeks, E.; Larson, R.S.; Vosen, S.R.; Shon, J.W. Modeling Chemical Downstream Etch Systems for NF3/O2 Mixtures. J. Electrochem. Soc. 1997, 144, 357–366. [Google Scholar] [CrossRef]
- Gangoli, S.P. Experimental and Modeling Study of Warm Plasmas and Their Applications. PhD Thesis, Drexel University, Philadelphia, PA, USA, 2007. [Google Scholar]
- Tavant, A.; Lieberman, M.A. Hybrid Global Model of Water Cluster Ions in Atmospheric Pressure Ar/H2O RF Capacitive Discharges. J. Phys. D. Appl. Phys. 2016, 49, 465201. [Google Scholar] [CrossRef]
- Bruggeman, P.; Schram, D.C. On OH Production in Water Containing Atmospheric Pressure Plasmas. Plasma Sources Sci. Technol. 2010, 19, 045025. [Google Scholar] [CrossRef]
- Ghimire, B.; Sornsakdanuphap, J.; Hong, Y.J.; Uhm, H.S.; Weltmann, K.D.; Choi, E.H. The Effect of the Gap Distance between an Atmospheric-Pressure Plasma Jet Nozzle and Liquid Surface on OH and N2 Species Concentrations. Phys. Plasmas 2017, 24, 073502. [Google Scholar] [CrossRef]
- Herron, J.T. Evaluated Chemical Kinetics Data for Reactions of N(2D), N(2P), and N2(A3Σ+u) in the Gas Phase. J. Phys. Chem. Ref. Data 1999, 28, 1453–1483. [Google Scholar] [CrossRef]
- Li, L.; Nikiforov, A.; Xiong, Q.; Britun, N.; Snyders, R.; Lu, X.; Leys, C. OH Radicals Distribution in an Ar-H2O Atmospheric Plasma Jet. Phys. Plasmas 2013, 20, 093502. [Google Scholar] [CrossRef]
- Tsang, W.; Herron, J.T. Chemical Kinetic Data Base for Propellant Combustion I. Reactions Involving NO, NO2, HNO, HNO2, HCN and N2O. J. Phys. Chem. Ref. Data 1991, 20, 609–663. [Google Scholar] [CrossRef]
- Baulch, D.L.; Cobos, C.J.; Cox, R.A.; Frank, P.; Hayman, G.; Just, T.; Kerr, J.A.; Murrells, T.; Pilling, M.J.; Troe, J.; et al. Evaluated Kinetic Data for Combustion Modelling. Supplement I. J. Phys. Chem. Ref. Data 1994, 23, 847–848. [Google Scholar] [CrossRef]
- Komuro, A.; Ono, R.; Oda, T. Behaviour of OH Radicals in an Atmospheric-Pressure Streamer Discharge Studied by Two-Dimensional Numerical Simulation. J. Phys. D Appl. Phys. 2013, 46, 175206. [Google Scholar] [CrossRef]
- Attri, P.; Kim, Y.H.; Park, D.H.; Park, J.H.; Hong, Y.J.; Uhm, H.S.; Kim, K.; Fridman, A.; Choi, E.H. Generation Mechanism of Hydroxyl Radical Species and Its Lifetime Prediction during the Plasma-Initiated Ultraviolet (UV) Photolysis. Sci. Rep. 2015, 5, 9332. [Google Scholar] [CrossRef]
- Sun, B.; Liu, D.; Iza, F.; Wang, S.; Yang, A.; Liu, Z.; Rong, M.; Wang, X. Global Model of an Atmospheric-Pressure Capacitive Discharge in Helium with Air Impurities from 100 to 10,000 Ppm. Plasma Sources Sci. Technol. 2019, 28, 035006. [Google Scholar] [CrossRef]
- Yue, Y.; Wu, F.; Cheng, H.; Xian, Y.; Liu, D.; Lu, X.; Pei, X. A Donut-Shape Distribution of OH Radicals in Atmospheric Pressure Plasma Jets. J. Appl. Phys. 2017, 121, 033302. [Google Scholar] [CrossRef]
- Vasko, C.A.; Liu, D.X.; van Veldhuizen, E.M.; Iza, F.; Bruggeman, P.J. Hydrogen Peroxide Production in an Atmospheric Pressure RF Glow Discharge: Comparison of Models and Experiments. Plasma Chem. Plasma Process. 2014, 34, 1081–1099. [Google Scholar] [CrossRef]
No | Reaction | A | Ref | ||
---|---|---|---|---|---|
1 | e + Ar → e + Ar * | 1.17 × 10−8 | 4.66 × 10−2 | 1.39 × 105 | [32] |
2 | e + Ar → Ar+ + 2e | 7.07 × 10−11 | 0.61 | 1.87 × 105 | [32] |
3 | e + Ar * → Ar+ + 2e | 1.25 × 10−7 | 5.04 × 10−2 | 6.05 × 104 | [32] |
4 | e + O2 → O + O * + e | 4.52 × 10−13 | 0.87 | 5.11 × 104 | [32] |
5 | e + O2 → O2+ + 2e | 3.99 × 10−14 | 1.13 | 1.38 × 105 | [32,33] |
6 | e + O2 → O + O− | 3.60 × 10−8 | −0.52 | 5.74 × 104 | [32,33] |
7 | e + O → O * + e | 4.30 × 10−7 | −0.35 | 3.84 × 104 | [32,34] |
8 | e + O → O+ + 2e | 1.95 × 10−11 | 0.62 | 1.65 × 105 | [32,34] |
9 | e + O * → O+ + 2e | 1.95 × 10−11 | 0.62 | 1.40 × 105 | [32] |
10 | e + O− → O + 2e | 2.10 × 10−10 | 0.54 | 3.94 × 104 | [32] |
11 | e + e + O → O− + e | 1.00 × 10−30 | [32,34] | ||
12 | Ar * + Ar * → Ar + Ar+ + e | 6.20 × 10−10 | [32] | ||
13 | O− + O2+ → O + O2 | 2.80 × 10−7 | [32] | ||
14 | O− + O+ → 2O | 2.80 × 10−7 | [32] | ||
15 | O− + O → O2 + e | 1.40 × 10−10 | [32] | ||
16 | O− + Ar+ → O + Ar | 2.80 × 10−7 | [32] | ||
17 | O+ + O2 → O2+ + O | 2.10 × 10−11 | [32] | ||
18 | O2+ + Ar → Ar+ + O2 | 5.50 × 10−11 | [32] | ||
19 | Ar+ + O2 → Ar + O2+ | 4.60 × 10−11 | [32] | ||
20 | Ar+ + O → O+ + Ar | 4.60 × 10−11 | [32] | ||
21 | O * + O2 → O + O2 | 3.20 × 10−11 | [32,35] | ||
22 | O * + O → O + O | 4.00 × 10−11 | [32] | ||
23 | O * + Ar → Ar + O | 4.00 × 10−11 | [32] | ||
24 | O + Ar * → Ar + O | 4.00 × 10−11 | [32] | ||
25 | O * + Ar * → O + Ar | 4.00 × 10−11 | [32] | ||
26 | O2 + Ar * → Ar + O2 | 4.00 × 10−11 | [32] | ||
27 | e + H2 → 2H + e | 1.70 × 10−8 | −2.44 × 10−2 | 1.20 × 105 | [32] |
28 | e + H2 → H2+ + 2e | 1.33 × 10−13 | 1.07 | 1.98 × 105 | [32] |
29 | e + H → H + e | 8.37 × 10−10 | 0.30 | 1.34 × 105 | [32] |
30 | e + H → H+ + 2e | 7.33 × 10−12 | 0.69 | 1.69 × 105 | [32] |
31 | O + O + M = O2 + M | 5.21 × 10−35 | −900 | [32,36] | |
32 | O + O3 = O2 + O2 | 8.71 × 10−12 | 2113 | [32] | |
33 | O3 + M = O + O2 + M | 7.17 × 10−10 | 1.12 × 104 | [32] | |
34 | H2 + O2 = OH + OH | 2.82 × 10−11 | 2.40 × 104 | [32,36] | |
35 | OH + H2 = H2O + H | 1.94 × 10−15 | 1.3 | 1825 | [32,36] |
36 | O + OH = O2 + H | 6.64 × 10−10 | −0.5 | [32,36] | |
37 | O + H2 = OH + H | 8.40 × 10−20 | 2.67 | 3165 | [32,36] |
38 | OH + HO2 = H2O + O2 | 1.25 × 10−11 | [32,36] | ||
39 | H + HO2 = OH + OH | 2.33 × 10−10 | 540 | [32,36] | |
40 | O + HO2 = O2 + OH | 2.33 × 10−11 | 540 | [32,36] | |
41 | OH + OH = O + H2O | 9.96 × 10−16 | 1.3 | [32,36] | |
42 | H + HO2 = H2 + O2 | 2.08 × 10−11 | [32,36] | ||
43 | HO2 + HO2 = H2O2 + O2 | 3.32 × 10−12 | [32,36] | ||
44 | H2O2 + M = OH + OH + M | 2.16 × 10−7 | 2.29 × 104 | [32,36] | |
45 | H2O2 + H = HO2 + H2 | 2.66 × 10−12 | 1912 | [32,36] | |
46 | H2O2 + OH = H2O + HO2 | 1.66 × 10−11 | 906 | [32,36] | |
47 | H + O2 + M = HO2 + M | 9.95 × 10−31 | −0.72 | [32,36] | |
48 | H + H + M = H2 + M | 2.76 × 10−30 | −1 | [32,36] | |
49 | H + H + H2 = H2 + H2 | 2.54 × 10−31 | −0.6 | [32,36] | |
50 | H + H + H2O = H2 + H2O | 1.65 × 10−28 | −1.25 | [32,36] | |
51 | H + OH + M = H2O + M | 4.41 × 10−26 | −2 | [32,36] | |
52 | H + O + M = OH + M | 1.71 × 10−31 | −0.6 | [32,36] | |
53 | H2+ + Ar → Ar+ + H2 | 3.00 × 10−10 | [32,37] | ||
54 | Ar+ + H2 → H2+ + Ar | 1.30 × 10−10 | [32,37] | ||
55 | e + N2 → e + N2 * | 5.65 × 10−21 | 2.17 | 2.90 × 104 | [38,39] |
56 | e + N2 → N2+ + 2e | 2.56 × 10−43 | 7.07 | 3.15 × 104 | [38,39] |
57 | e + N → N+ + 2e | 5.11 × 10−37 | 5.78 | 4.76 × 104 | [38,39] |
58 | e + N+ → N | 2.25 × 10−1 | −2.5 | [38,39] | |
59 | e + N2+ → N + N | 2.25 × 10−1 | −2.5 | [38,39] | |
60 | e + N2+ → N2 | 2.25 × 10−1 | −2.5 | [38,39] | |
61 | e + H2O → OH + H + e | 1.37 × 10−6 | −0.34 | 1.63 × 105 | [40] |
62 | e + H2O → OH * + H + e | 4.04 × 10−3 | −1.13 | 2.07 × 105 | [40] |
63 | O * + H2O → 2OH | 2.20 × 10−10 | [35] | ||
64 | Ar * + H2O → OH + H + Ar | 4.50 × 10−10 | [41] | ||
65 | Ar * + H2O → Ar + H2O+ + e | 4.50 × 10−10 | [42] | ||
66 | Ar+ + H2O → H+ + OH + Ar | 3.10 × 10−10 | [40] | ||
67 | e + H2O+ → OH + H | 2.60 × 10−8 | [42] | ||
68 | N2 * + H2O → OH + N2 + H | 5.00 × 10−14 | [43] | ||
69 | N2 * + OH → OH * + N2 | 1.00 × 10−10 | [43] | ||
70 | e + H2O2 → 2OH + e | 2.36 × 10−9 | [40] | ||
71 | e + OH → e + OH * | 2.70 × 10−10 | [44] | ||
72 | e + H2O → H2O+ + 2e | 3.08 × 10−20 | 2.33 | 1.31 × 105 | [40] |
73 | OH * → OH | 1.25 × 1012 | [40] | ||
74 | NO + O → O2 + N | 8.93 × 10−13 | 1 | 1.62 × 105 | [45] |
75 | NO + N → N2 + O | 3.11 × 10−11 | [35] | ||
76 | NO → O + N | 1.60 × 10−9 | 6.20 × 105 | [45] | |
77 | O * + N2 → N2 + O | 1.79 × 10−11 | −890 | [35] | |
78 | O3 + N → O2 + NO | 1.00 × 10−16 | [35] | ||
79 | O2 + N → NO + O | 4.47 × 10−12 | 1 | 2.72 × 104 | [46] |
80 | OH + N → NO + H | 3.80 × 10−11 | −707 | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seol, Y.; Choi, M.; Chang, H.; You, S. Study on OH Radical Production Depending on the Pulse Characteristics in an Atmospheric-Pressure Nanosecond-Pulsed Plasma Jet. Materials 2023, 16, 3846. https://doi.org/10.3390/ma16103846
Seol Y, Choi M, Chang H, You S. Study on OH Radical Production Depending on the Pulse Characteristics in an Atmospheric-Pressure Nanosecond-Pulsed Plasma Jet. Materials. 2023; 16(10):3846. https://doi.org/10.3390/ma16103846
Chicago/Turabian StyleSeol, Youbin, Minsu Choi, Hongyoung Chang, and Shinjae You. 2023. "Study on OH Radical Production Depending on the Pulse Characteristics in an Atmospheric-Pressure Nanosecond-Pulsed Plasma Jet" Materials 16, no. 10: 3846. https://doi.org/10.3390/ma16103846
APA StyleSeol, Y., Choi, M., Chang, H., & You, S. (2023). Study on OH Radical Production Depending on the Pulse Characteristics in an Atmospheric-Pressure Nanosecond-Pulsed Plasma Jet. Materials, 16(10), 3846. https://doi.org/10.3390/ma16103846