Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tayyebi, M.; Alizadeh, M. Thermal and wear properties of Al/Cu functionally graded metal matrix composite produced by severe plastic deformation method. J. Manuf. Process. 2023, 85, 515–526. [Google Scholar] [CrossRef]
- Ye, Q.; Li, X.; Tayyebi, M.; Assari, A.H.; Polkowska, A.; Lech, S.; Polkowski, W.; Tayebi, M. Effect of heat treatment parameters on microstructure evolution, tensile strength, wear resistance, and fracture behavior of Ni–Ti multilayered composites produced by cross-accumulative roll bonding. Arch. Civ. Mech. Eng. 2023, 23, 27. [Google Scholar] [CrossRef]
- Mohazzab, B.F.; Jaleh, B.; Fattah-alhosseini, A.; Mahmoudi, F.; Momeni, A. Laser surface treatment of pure titanium: Micro-structural analysis, wear properties, and corrosion behavior of titanium carbide coatings in Hank’s physiological solution. Surf. Interfaces 2020, 20, 100597. [Google Scholar] [CrossRef]
- Xu, M.; Yu, X.; Zhang, S.; Yan, S.; Tarbokov, V.; Remnev, G.; Le, X. Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing. Materials 2023, 16, 3028. [Google Scholar] [CrossRef] [PubMed]
- Gloc, M.; Przybysz-Gloc, S.; Wachowski, M.; Kosturek, R.; Lewczuk, R.; Szachogłuchowicz, I.; Paziewska, P.; Maranda, A.; Ciupiński, Ł. Research on Explosive Hardening of Titanium Grade 2. Materials 2023, 16, 847. [Google Scholar] [CrossRef] [PubMed]
- Pintilei, G.L.; Crismaru, V.I.; Abrudeanu, M.; Munteanu, C.; Luca, D.; Istrate, B. The influence of ZrO2/20%Y2O3 and Al2O3 deposited coatings to the behavior of an aluminum alloy subjected to mechanical shock. Appl. Surf. Sci. 2015, 352, 169–177. [Google Scholar] [CrossRef]
- Baltatu, M.S.; Sandu, A.V.; Nabialek, M.; Vizureanu, P.; Ciobanu, G. Biomimetic Deposition of Hydroxyapatite Layer on Titanium Alloys. Micromachines 2021, 12, 1447. [Google Scholar] [CrossRef]
- Wang, Y.; Tayyebi, M.; Assari, A. Fracture toughness, wear, and microstructure properties of aluminum/titanium/steel multi-laminated composites produced by cross-accumulative roll-bonding process. Arch. Civ. Mech. Eng. 2022, 22, 49. [Google Scholar] [CrossRef]
- Yumusak, G.; Leyland, A.; Matthews, A. The effect of pre-deposited titanium-based PVD metallic thin films on the nitrogen diffusion efficiency and wear behaviour of nitrided Ti alloys. Surf. Coat. Technol. 2020, 394, 125545. [Google Scholar] [CrossRef]
- Genc, O.; Unal, R. Development of gamma titanium aluminide (γ-TiAl) alloys: A review. J. Alloys Compd. 2022, 929, 167262. [Google Scholar] [CrossRef]
- Guo, A.X.; Cheng, L.; Zhan, S.; Zhang, S.; Xiong, W.; Wang, Z.; Wang, G.; Cao, S.C. Biomedical applications of the powder-based 3D printed titanium alloys: A review. J. Mater. Sci. Technol. 2022, 125, 252–264. [Google Scholar] [CrossRef]
- Chirico, C.; Romero, A.V.; Gordo, E.; Tsipas, S. Improvement of wear resistance of low-cost powder metallurgy β-titanium alloys for biomedical applications. Surf. Coat. Technol. 2022, 434, 128207. [Google Scholar] [CrossRef]
- Yumusak, G.; Leyland, A.; Matthews, A. A microabrasion wear study of nitrided α-Ti and β-TiNb PVD metallic thin films, pre-deposited onto titanium alloy substrates. Surf. Coat. Technol. 2022, 442, 128423. [Google Scholar] [CrossRef]
- Zhao, S.; Meng, F.; Fan, B.; Dong, Y.; Wang, J.; Qi, X. Evaluation of wear mechanism between TC4 titanium alloys and self-lubricating fabrics. Wear 2023, 512–513, 204532. [Google Scholar] [CrossRef]
- Wen, K.; Zhang, C.; Gao, Y. Influence of gas pressure on the low-temperature plasma nitriding of surface-nanocrystallined TC4 titanium alloy. Surf. Coat. Technol. 2022, 436, 128327. [Google Scholar] [CrossRef]
- Tarnowski, M.; Borowski, T.; Skrzypek, S.; Kulikowski, K.; Wierzchoń, T. Shaping the structure and properties of titanium and Ti6Al7Nb titanium alloy in low-temperature plasma nitriding processes. J. Alloys Compd. 2021, 864, 158896. [Google Scholar] [CrossRef]
- Mohan, L.; Anandan, C. Effect of gas composition on corrosion behavior and growth of apatite on plasma nitrided titanium alloy Beta-21S. Appl. Surf. Sci. 2013, 268, 288–296. [Google Scholar] [CrossRef]
- Bacci, T.; Borgioli, F.; Tesi, B. Surface modification of Ti–6Al–4V alloy by means of combined plasma nitriding and oxidising treatments. Surf. Eng. 1998, 14, 500–504. [Google Scholar] [CrossRef]
- Kikuchi, S.; Ota, S.; Akebono, H.; Omiya, M.; Komotori, J.; Sugeta, A.; Nakai, Y. Formation of nitrided layer using atmospheric-controlled IH-FPP and its effect on the fatigue properties of Ti-6Al-4V alloy under four-point bending. Procedia Struct. Integr. 2016, 2, 3432–3438. [Google Scholar] [CrossRef][Green Version]
- Takesue, S.; Kikuchi, S.; Akebono, H.; Morita, T.; Komotori, J. Characterization of surface layer formed by gas blow induction heating nitriding at different temperatures and its effect on the fatigue properties of titanium alloy. Results Mater. 2020, 5, 100071. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L. Formation, tribological and corrosion properties of thicker Ti-N layer produced by plasma nitriding of titanium in a N2-NH3 mixture gas. Surf. Coat. Technol. 2020, 393, 125846. [Google Scholar] [CrossRef]
- She, D.; Yue, W.; Fu, Z.; Wang, C.; Yang, X.; Liu, J. Effects of nitriding temperature on microstructures and vacuum tribological properties of plasma-nitrided titanium. Surf. Coat. Technol. 2015, 264, 32–40. [Google Scholar] [CrossRef]
- Hacısalihoğlu, İ.; Kaya, G.; Ergüder, T.O.; Mandev, E.; Manay, E.; Yıldız, F. Tribological and thermal properties of plasma nitrided Ti45Nb alloy. Surf. Interfaces 2021, 22, 100893. [Google Scholar] [CrossRef]
- Borisyuk, Y.; Oreshnikova, N.; Berdnikova, M.; Tumarkin, A.; Khodachenko, G.; Pisarev, A. Plasma Nitriding of Titanium Alloy Ti5Al4V2Mo. Phys. Procedia 2015, 71, 105–109. [Google Scholar] [CrossRef][Green Version]
- Fu, Y.-D.; Zhu, X.-S.; Li, Z.-F.; Leng, K. Properties and microstructure of Ti6Al4V by deformation accelerated low temperature plasma nitriding. Trans. Nonferr. Met. Soc. China 2016, 26, 2609–2616. [Google Scholar] [CrossRef]
- Farokhzadeh, K.; Edrisy, A.; Pigott, G.; Lidster, P. Scratch resistance analysis of plasma-nitrided Ti–6Al–4V alloy. Wear 2013, 302, 845–853. [Google Scholar] [CrossRef]
- Zhecheva, A.; Sha, W.; Malinov, S.; Long, A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coat. Technol. 2005, 200, 2192–2207. [Google Scholar] [CrossRef]
- Chen, K.; Jaung, G.D.c. diode ion nitriding behavior of titanium and Ti-6Al-4V. Thin Solid Films 1997, 303, 226–231. [Google Scholar] [CrossRef]
- Sun, B.; Wang, L.; Sun, Y.; Gao, J.; Cao, H.; Ren, J.; Cui, J.; Yuan, X.; Li, A.; Wang, C. Enhanced thermal stability of Mo film with low infrared emissivity by a TiN barrier layer. Appl. Surf. Sci. 2021, 571, 151368. [Google Scholar] [CrossRef]
- Wang, C.; Chen, W.; Chen, M.; Chen, D.; Yang, K.; Wang, F. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 °C. J. Mater. Sci. Technol. 2020, 45, 125–132. [Google Scholar] [CrossRef]
- Rizzo, A.; Signore, M.A.; Mirenghi, L.; Di Luccio, T. Synthesis and characterization of titanium and zirconium oxynitride coatings. Thin Solid Films 2009, 517, 5956–5964. [Google Scholar] [CrossRef]
- Pohrelyuk, I.; Morgiel, J.; Tkachuk, O.; Szymkiewicz, K. Effect of temperature on gas oxynitriding of Ti-6Al-4V alloy. Surf. Coat. Technol. 2019, 360, 103–109. [Google Scholar] [CrossRef]
- Dong, H.; Li, X. Oxygen boost diffusion for the deep-case hardening of titanium alloys. Mater. Sci. Eng. A 2000, 280, 303–310. [Google Scholar] [CrossRef]
- Jadhav, P.S.; Jadhav, T.; Bhosale, M.; Jadhav, C.; Pawar, V. Structural and optical properties of N-doped TiO2 nanomaterials. Mater. Today Proc. 2021, 43, 2763–2767. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, Q.; Huang, B. Synthesis and properties of novel N/Ta-co-doped TiO2 coating on titanium in simulated PEMFC environment. J. Alloys Compd. 2021, 879, 160470. [Google Scholar] [CrossRef]
- Sayegh, S.; Abid, M.; Tanos, F.; Cretin, M.; Lesage, G.; Zaviska, F.; Petit, E.; Navarra, B.; Iatsunskyi, I.; Coy, E.; et al. N-doped TiO2 nanotubes synthesized by atomic layer deposition for acetaminophen degradation. Colloids Surf. A 2022, 655, 130213. [Google Scholar] [CrossRef]
- Gao, W.; Li, Z. (Eds.) 6—Tribological degradation at elevated temperature. In Developments in High Temperature Corrosion and Protection of Materials; Woodhead Publishing: Cambridge, UK, 2008; pp. 117–163. [Google Scholar]
- Allahyarzadeh, M.; Aliofkhazraei, M.; Rouhaghdam, A.S.; Alimadadi, H.; Torabinejad, V. Mechanical properties and load bearing capability of nanocrystalline nickel-tungsten multilayered coatings. Surf. Coat. Technol. 2020, 386, 125472. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X.B.; Liu, Y.F.; Wang, G.; Wang, Y.; Meng, Y.; Liang, J. Development and characterization of Co-Cu/Ti3SiC2 self-lubricating wear resistant composite coatings on Ti6Al4V alloy by laser cladding. Surf. Coat. Technol. 2021, 424, 127664. [Google Scholar] [CrossRef]
- Huang, Z.P.; Zhao, W.J. Coupling hybrid of HBN nanosheets and TiO2 to enhance the mechanical and tribological properties of composite coatings. Prog. Org. Coat. 2020, 148, 105881. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Bhakhri, V.; Giuliani, F.; Atkinson, A. Nanoindentation of porous bulk and thin films of La0.6Sr0.4Co0.2Fe0.8O3−δ. Acta Mater. 2013, 61, 5720–5734. [Google Scholar] [CrossRef][Green Version]
- Chen, W.; Wang, H. Reduced strain rate sensitivity by structural rejuvenation in metallic glass under nanoindentation. Mater. Lett. 2021, 298, 130037. [Google Scholar] [CrossRef]
Sample | First Oxy-Nitriding Course | Second Oxy-Nitriding Course | ||||
---|---|---|---|---|---|---|
O2:N2 | Pressure (Pa) | Time (h) | O2:N2 | Pressure (Pa) | Time (h) | |
PN3h | \ | \ | \ | 100% N2 | 40 | 3 |
PON3h-30Pa | 1:4 | 15 | 1 | 1:9 | 30 | 2 |
PON3h-35Pa | 1:4 | 15 | 1 | 1:11 | 35 | 2 |
PON3h-40Pa | 1:4 | 15 | 1 | 1:13 | 40 | 2 |
PON4h-40Pa | 1:4 | 15 | 2 | 1:13 | 40 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, H.; Wang, S.; Yang, Y.; Niu, Y.; Zhu, S.; Wang, F. Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding. Materials 2023, 16, 3609. https://doi.org/10.3390/ma16103609
Li H, Wang H, Wang S, Yang Y, Niu Y, Zhu S, Wang F. Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding. Materials. 2023; 16(10):3609. https://doi.org/10.3390/ma16103609
Chicago/Turabian StyleLi, Haidong, Haifeng Wang, Shijie Wang, Yange Yang, Yunsong Niu, Shenglong Zhu, and Fuhui Wang. 2023. "Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding" Materials 16, no. 10: 3609. https://doi.org/10.3390/ma16103609
APA StyleLi, H., Wang, H., Wang, S., Yang, Y., Niu, Y., Zhu, S., & Wang, F. (2023). Structure and Wear Performance of a Titanium Alloy by Using Low-Temperature Plasma Oxy-Nitriding. Materials, 16(10), 3609. https://doi.org/10.3390/ma16103609