Embedding Information into or onto Additively Manufactured Parts: A Review of QR Codes, Steganography and Watermarking Methods
Abstract
:1. Introduction
1.1. History and Basics of AM
1.2. Digital Ways of Manufacturing and Methods of Embedding Information into/onto AM Parts
1.3. Outline of the Paper
2. Approaches for Embedding Information into/onto AM Parts
2.1. QR Code
Descriptions and Comparisons of the Methods
2.2. Digital Watermarking and Copyright Protection Methods
Descriptions and Comparisons of the Methods
2.3. Steganography
Descriptions and Comparisons of the Methods
2.4. Other Methods
Descriptions and Comparisons of the Methods
3. Future Trends and Applications Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | three dimensional |
ABS | acrylonitrile butadiene styrene |
AM | additive manufacturing |
BJ | binder jetting |
CAD | computed-aided design |
CAM | computer-aided manufacturing |
DMLS | direct metal laser sintering |
FDM | fused deposition modelling |
FFF | fused-filament fabrication |
LOM | laminated object manufacturing |
MJ | material jetting |
PLA | polylactic acid |
QR | quick response |
SLA | stereolithography |
SLM | selective laser melting |
SLS | selective laser sintering |
References
- History of QR Code. Available online: https://www.qrcode.com/en/history/ (accessed on 31 March 2022).
- Kikuchi, R.; Yoshikawa, S.; Jayaraman, P.K.; Zheng, J.; Maekawa, T. Embedding QR codes onto B-spline surfaces for 3D printing. Comput. Aided Des. 2018, 102, 215–223. [Google Scholar] [CrossRef]
- Chen, F.; Luo, Y.; Tsoutsos, N.G.; Maniatakos, M.; Shahin, K.; Gupta, N. Embedding tracking codes in additive manufactured parts for product authentication. Adv. Eng. Mater. 2019, 21, 1800495. [Google Scholar] [CrossRef]
- Wei, C.; Sun, Z.; Huang, Y.; Li, L. Embedding anti-counterfeiting features in metallic components via multiple material additive manufacturing. Addit. Manuf. 2018, 24, 1–12. [Google Scholar] [CrossRef][Green Version]
- Yang, J.; Peng, H.; Lu, L. 3D printed perforated QR codes. Comput. Graph. 2019, 81, 117–124. [Google Scholar] [CrossRef]
- Peng, H.; Lu, L.; Sharf, A.; Chen, B. Fabricating QR codes on 3D objects using self-shadows. Comput. Aided Des. 2019, 114, 91–100. [Google Scholar] [CrossRef]
- Gültekin, S.; Ural, A.; Yaman, U. Embedding QR Codes on the Interior Surfaces of FFF Fabricated Parts. Procedia Manuf. 2019, 39, 519–525. [Google Scholar] [CrossRef]
- Peng, H.; Liu, P.; Lu, L.; Sharf, A.; Liu, L.; Lischinski, D.; Chen, B. Fabricable Unobtrusive 3D-QR-Codes with Directional Light. Comput. Graph. Forum 2020, 39, 15–27. [Google Scholar] [CrossRef]
- Papp, G.; Hoffmann, M.; Papp, I. Improved Embedding of QR Codes onto Surfaces to be 3D Printed. Comput. Aided Des. 2021, 131, 102961. [Google Scholar] [CrossRef]
- Yeo, B.-L.; Yeung, M.M. Watermarking 3D objects for verification. IEEE Comput. Graph. Appl. 1999, 19, 36–45. [Google Scholar]
- Zafeiriou, S.; Tefas, A.; Pitas, I. A blind robust watermarking scheme for copyright protection of 3D mesh models. In Proceedings of the 2004 International Conference on Image Processing (ICIP’04), Singapore, 24–27 October 2004; Volume 3. [Google Scholar]
- Aliaga, D.G.; Atallah, M.J. Genuinity signatures: Designing signatures for verifying 3d object genuinity. Comput. Graph. Forum 2009, 28, 437–446. [Google Scholar] [CrossRef]
- Suzuki, M.; Silapasuphakornwong, P.; Uehira, K.; Unno, H.; Takashima, Y. Copyright Protection for 3D Printing by Embedding Information Inside Real Fabricated Objects. In Proceedings of the 10th International Conference on Computer Vision Theory and Applications (VISAPP), Berlin, Germany, 11–14 March 2015. [Google Scholar]
- Macq, B.; Alface, P.R.; Montanola, M. Applicability of watermarking for intellectual property rights protection in a 3D printing scenario. In Proceedings of the 20th International Conference on 3D Web Technology, Crete, Greece, 18–21 June 2015. [Google Scholar]
- Hou, J.-U.; Kim, D.-G.; Choi, S.; Lee, H.-K. 3D print-scan resilient watermarking using a histogram-based circular shift coding structure. In Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, Portland, OR, USA, 17–19 June 2015. [Google Scholar]
- Hou, J.-U.; Kim, D.; Lee, H. Blind 3D mesh watermarking for 3D printed model by analyzing layering artifact. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2712–2725. [Google Scholar] [CrossRef]
- Pham, G.N.; Lee, S.-H.; Kwon, O.-H.; Kwon, K.-R. A 3D printing model watermarking algorithm based on 3D slicing and feature points. Electronics 2018, 7, 23. [Google Scholar] [CrossRef][Green Version]
- Pham, G.N.; Lee, S.-H.; Kwon, O.-H.; Kwon, K.-R. A watermarking method for 3D printing based on menger curvature and K-Mean clustering. Symmetry 2018, 10, 97. [Google Scholar] [CrossRef][Green Version]
- Delmotte, A.; Tanaka, K.; Kubo, H.; Funatomi, T.; Mukaigawa, Y. Blind watermarking for 3-d printed objects using surface norm distribution. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 25–29 June 2018. [Google Scholar]
- Peng, F.; Yang, J.; Long, M. 3-D printed object authentication based on printing noise and digital signature. IEEE Trans. Reliab. 2018, 68, 342–353. [Google Scholar] [CrossRef]
- Delmotte, A.; Tanaka, K.; Kubo, H.; Funatomi, T.; Mukaigawa, Y. Blind watermarking for 3-D printed objects by locally modifying layer thickness. IEEE Trans. Multimed. 2019, 22, 2780–2791. [Google Scholar] [CrossRef]
- Li, Z.; Gong, D.; Tan, L.; Luo, X.; Liu, F.; Bors, A.G. Self-embedding watermarking method for G-code used in 3D printing. In Proceedings of the 2021 IEEE International Workshop on Information Forensics and Security (WIFS), Montpellier, France, 7–10 December 2021. [Google Scholar]
- Cayre, F.; Benoit, M. Data hiding on 3-D triangle meshes. IEEE Trans. Signal Process. 2003, 51, 939–949. [Google Scholar] [CrossRef]
- Tsai, Y.-Y.; Wang, C.-M.; Cheng, Y.-M.; Chang, C.-H.; Wang, P.-C. Steganography on 3D models using a spatial subdivision technique. In Advances in Computer Graphics, Proceedings of the Computer Graphics International Conference, Hangzhou, China, 26–28 June 2006; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Bogomjakov, A.; Gotsman, C.; Isenburg, M. Distortion-free steganography for polygonal meshes. Comput. Graph. Forum 2008, 27, 637–642. [Google Scholar] [CrossRef]
- Chao, M.-W.; Lin, C.-H.; Yu, C.-W.; Lee, T.-Y. A high capacity 3D steganography algorithm. IEEE Trans. Vis. Comput. Graph. 2008, 15, 274–284. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tsai, Y.-Y. An adaptive steganographic algorithm for 3D polygonal models using vertex decimation. Multimed. Tools Appl. 2014, 69, 859–876. [Google Scholar] [CrossRef]
- Kaveh, H.; Moin, M. A high-capacity and low-distortion 3D polygonal mesh steganography using surfacelet transform. Secur. Commun. Netw. 2015, 8, 159–167. [Google Scholar] [CrossRef]
- Itier, V.; Puech, W.; Pedeboy, J.-P. Highcapacity data-hiding for 3D meshes based on static arithmetic coding. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015. [Google Scholar]
- Li, N.; Hu, J.; Sun, R.; Wang, S.; Luo, Z. A high-capacity 3D steganography algorithm with adjustable distortion. IEEE Access 2017, 5, 24457–24466. [Google Scholar] [CrossRef]
- Suzuki, M.; Matumoto, T.; Takashima, Y.; Torii, H.; Uehira, K. Information hiding inside 3-d printed objects by forming high reflectance projections. In Proceedings of the International Conference on Video and Image Processing, Singapore, 27–29 December 2017. [Google Scholar]
- Willis, K.D.D.; Wilson, A.D. Infrastructs: Fabricating information inside physical objects for imaging in the terahertz region. ACM Trans. Graph. 2013, 32, 1–10. [Google Scholar] [CrossRef]
- Hook, J.; Nappey, T.; Hodges, S.; Wright, P.; Olivier, P. Making 3D printed objects interactive using wireless accelerometers. In CHI’14 Extended Abstracts on Human Factors in Computing Systems, Proceedings of the CHI’14: CHI Conference on Human Factors in Computing, Toronto, ON, Canada, 26 April–1 May 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 1435–1440. [Google Scholar]
- Schmitz, M.; Khalilbeigi, M.; Balwierz, M.; Lissermann, R.; Mühlhäuser, M.; Steimle, J. Capricate: A fabrication pipeline to design and 3D print capacitive touch sensors for interactive objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, Charlotte, NC, USA, 8–11 November 2015. [Google Scholar]
- Stoll, P.; Mathew, J.; Spierings, A.; Bauer, T.; Maier, R.R.; Wegener, K. Embedding fibre optical sensors into SLM parts. In Proceedings of the 27th Annual International Solid Freeform Fabrication, Austin, TX, USA, 15–27 July 2016; pp. 1815–1825. [Google Scholar]
- He, L.; Laput, G.; Brockmeyer, E.; Froehlich, J.E. SqueezaPulse: Adding interactive input to fabricated objects using corrugated tubes and air pulses. In Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, Yokohama, Japan, 20–23 March 2017. [Google Scholar]
- Suzuki, M.; Silapasuphakornwong, P.; Takashima, Y.; Torii, H.; Uehira, K. Number of detectable gradations in X-ray photographs of cavities inside 3-D printed objects. IEICE Trans. Inf. Syst. 2017, 100, 1364–1367. [Google Scholar] [CrossRef][Green Version]
- Li, D.; Nair, A.S.; Nayar, S.K.; Zheng, C. Aircode: Unobtrusive physical tags for digital fabrication. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, Quebec City, QC, Canada, 22–25 October 2017. [Google Scholar]
- Nielsen, J.B.; Eiriksson, E.R.; Lyngby, R.; Wilm, J.; Jensen, J.; Aanaes, H.; Pedersen, D. PicPrint: Embedding pictures in additive manufacturing. In Euspen and ASPE Special Interest Group Meeting: Additive Manufacturing: Dimensional Accuracy and Surface Finish from Additive Manufacturing; The European Society for Precision Engineering and Nanotechnology: Bedfordshire, UK, 2017. [Google Scholar]
- Tejada, C.; Fujimoto, O.; Li, Z.; Ashbrook, D. Blowhole: Blowing-Activated Tags for Interactive 3D-Printed Models. In Proceedings of the Graphics Interface Conference, Toronto, ON, Canada, 8–11 May 2018. [Google Scholar]
- Maia, H.T.; Li, D.; Yang, Y.; Zheng, C. LayerCode: Optical barcodes for 3D printed shapes. ACM Trans. Graph. 2019, 38, 1–14. [Google Scholar] [CrossRef]
- Silapasuphakornwong, P.; Torii, H.; Uehira, K.; Funsian, A.; Asawapithulsert, K.; Sermpong, T. Embedding Information in 3D Printed Objects Using Double Layered Near Infrared Fluorescent Dye. Int. J. Mater. Manuf. 2019, 7, 230–234. [Google Scholar] [CrossRef]
- Silapasuphakornwong, P.; Torii, H.; Uehira, K.; Chandenduang, S. Embedding Information in 3D Printed Objects with Curved Surfaces Using Near Infrared Fluorescent Dye. In Proceedings of the Twelfth International Conference on Advances in Multimedia, Lisbon, Portugal, 23–27 February 2020. [Google Scholar]
- Dogan, M.D.; Faruqi, F.; Churchill, A.D.; Friedman, K.; Cheng, L.; Subramanian, S.; Mueller, S. G-ID: Identifying 3D Prints Using Slicing Parameters. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar]
- Uyan, T.; Jalava, K.; Orkas, J.; Otto, K. Additively Manufactured Tags for Cast Part Traceability Using Two-Dimensional Digital Code Direct-Part-Marking. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Online, 17–19 August 2020; Volume 83983. [Google Scholar]
Studies | Technique | AM Method(s) | Minimum Feature Size | Material | 3D Printer | Internal/External | Scan Software (OS)/Technology | Scan Hardware | Additional Processing |
---|---|---|---|---|---|---|---|---|---|
Kikuchi et al., 2018 [2] | Grooving | FFF | 0.4 mm | ABS | Zortrax M200 | External | iOS/Android | Mobile Phone Camera | No |
Chen et al., 2018 [3] | Division and Segmentation | FFF, MJ, DMLS | FFF—0.178 mm; MJ—0.016 mm and 0.014 mm; DMLS—0.020 mm | ABS, Clear Resin, White and Black resin, AlSi,10Mg Powder | FDM-Stratasys Dimension Elite, MJ-Stratasys Objet30 Pro, MJ-Stratasys J750), DMLS (EOS M270) | Internal, between layers | Micro-Computed Tomography | Micro-Ct Scanner (SkyScan 1171, Bruker) | No |
Wei et al., 2019 [4] | Embedding (Deposition and Melting) | SLM | 316 L—50 mm; Cu10Sn—50 mm | Powder-316 L, Tagging Material-Cu10Sn | Multiple Material SLM developed at the University of Manchester | External and Internal | Infrared thermal imaging, X-ray imaging, X-ray fluorescence | Thermal imaging—FLIR Systems T650 sc.; X-ray imaging—Varian medical systems PaxScan 2530; X-RAY WorX GmbH, XWT-225-RAC. X-ray fluorescence analyzer—Thermo Scientific, Niton XL3t700 s. | Yes |
Yang et al., 2019 [5] | Carving | FFF | 0.4 mm | White PLA | HORI Z500 | External | iOS/Android | Mobile Phone Camera | No |
Peng et al., 2019 [6] | Carving (Shadows for scanning) | FFF | 0.4 mm | PLA | HORI Z500 | External | iOS/Android | Mobile Phone Camera | No |
Gultekin et al., 2019 [7] | Solid Subtraction | FFF | 0.4 mm | PLA | Ultimaker 3 Extended | Internal | iOS/Android | Mobile Phone Camera | No |
Peng et al., 2020 [8] | Carving | SLA | 0.1 mm | Opaque Photopolymer | UnionTech Lite 600HD | External | iOS/Android | Mobile Phone Camera | Yes |
Papp et al., 2021 [9] | Embedding | FFF | 0.4 mm | PLA | e Prusa i3 MK2.5 | External | iOS/Android | Mobile Phone Camera | No |
Studies | Spatial/Transform | Fragile/Robust | Non-Blind/Blind | Use of a Key | Physical/Digital Model | Detection Level and Method | Material Used | AM Method(s) |
---|---|---|---|---|---|---|---|---|
Yeo et al., 1999 [10] | Spatial | Fragile | Blind | Yes | Digital | Beginner | - | - |
Zaferio et al., 2004 [11] | Transform | Robust | Blind | Yes | Digital | Beginner | - | - |
Aliaga et al., 2009 [12] | - | Robust | non-blind | Yes | Physical | High (usage of camera—Canon Rebel Xti 10 MP) | PLA | FFF |
Suzuki et al., 2015 [13] | - | - | non-blind | Yes | Physical | High-Thermography | PLA resin | FFF |
Macq et al., 2015 [14] | - | - | - | - | - | - | - | - |
Hou et al., 2015 [15] | Spatial | Robust | Blind | Yes | Digital and Physical | High—3D scanning using Maestro3D MDS400 | PLA, ABS, Resin | FFF and LOM |
Hou et al., 2017 [16] | Spatial | Robust | non-blind | No | Digital and Physical | High | PLA | FFF |
Pham et al., 2018 [17] | Spatial | Robust | non-blind | Yes | Digital and Physical | High—MakerBot 3D scanner | PLA | FFF |
Pham et al., 2018 [18] | - | Robust | Blind | Yes | Digital and Physical | High—HP 3D-Structured Light Scanner Pro S3 SingleCamera | PLA | FFF |
Delmotte et al., 2018 [19] | - | Robust | Blind | Yes | Physical | High—hand-held microscope imaging: Anyty 3R-MSUSB401 | Evolvel 28, Future Resin 8000, DSM Somos 14120, Zr550 | SLS, FFF, SLA |
Peng et al., 2018 [20] | - | Robust | Blind | No | Physical | Medium—one-shot paper scanner Canon PIXUS MG3630 | PLA using different colors | FFF |
Delmotte et al., 2019 [21] | - | Robust | Blind | No | Physical | Medium—one-shot paper scanner Canon PIXUS MG3630 | PLA using different colors | FFF |
Li et al., 2021 [22] | Spatial | - | Non-blind | No | Physical | Medium—algorithm using average related difference (ARD) | PLA | FFF |
Studies | Model (Digital/Physical) | Spatial/Transform | Blind/Non-Blind | Capacity | Robustness | Security | AM Method | Material Used | Possible Method |
---|---|---|---|---|---|---|---|---|---|
Cayre et al., 2003 [23] | Digital | Spatial | Blind | Low—one bit per vertex | Low | High | - | - | FFF |
Tsai et al., 2006 [24] | Digital | Spatial | Blind | Medium—three times the number of embedded vertices | medium-effective against similarity transformation attacks | High | - | - | FFF |
Bogomjakov et al., 2008 [25] | Digital | - | Blind | Medium—1 bit per element | High | High | - | - | FFF, SLA |
Chao et al., 2008 [26] | Digital | Spatial | Blind | High—21–39 bits per vertex | Very Low | High | - | - | FFF |
Tsai et al., 2014 [27] | Digital | Spatial | Blind | Medium—6.27–15.60 bits per vertex | Medium | High | - | - | FFF |
Kaveh et al., 2015 [28] | Digital | Transform | Blind | Low—3 bits per vetex | High | High | - | - | FFF, SLA |
Itier et al., 2015 [29] | Digital | - | Blind | High—3–24 bits per vetex | Low | High | - | - | FFF |
Li et al., 2017 [30] | Digital | Spatial | Blind | Very High—90 bits per vertex | Medium | High | - | - | FFF |
Suzuki et al., 2017 [31] | Physical | - | - | 6.25 bits/cm | Medium | High | FFF | PLA | - |
Studies | Technology | AM Method | Material Used | Printer Used | Scanning Method | Scanning Equipment |
---|---|---|---|---|---|---|
Willis et al., 2013 [32] | Infrastruct (Tags) | FFF | ABS | Stratasys Dimension SST 1200es | Tetrahertz imaging | Picometrix T-Ray 4000 |
Hook et al., 2014 [33] | Wireless accelerometers | FFF | PLA | N/A | - | - |
Schmitz et al., 2015 [34] | Capricate (Touch Sensors) | FFF | ABS | Ultimaker Original 3D printer | - | - |
Stoll et al., 2016 [35] | Fiber Optic Sensors | SLM | 316 Stainless Steel | Concept Laser M1 | - | - |
He et al., 2017 [36] | SqueezaPulse (Air Pulse) | FFF | PLA, ABS | MakerBot | Microphone | Audio-technica ATR3350 |
Suzuki et al., 2017 [37] | Cavities | MJ | black polymer | Objet 30 | X-ray images | (inspeXio SMX-225CT |
Li et al., 2017 [38] | Aircode (air pockets) | MJ | white polymer | Stratasys Eden260VS | Light images | Grey Grasshopper3 monochrome linear |
Nielsen et al., 2017 [39] | Pic-print (Lithophane) | FFF | PLA | Ultimater 2+ | - | - |
Tejada et al., 2018 [40] | Blowhole (Activated tags) | FFF | PLA | Qidi Technology X-One, LulzBot Taz 4, and LulzBot Taz Mini | Microphone | microphone integrated in laptops and smartphones |
Maia et al., 2019 [41] | Layercode (Optical barcodes) | FFF, SLA, MJ | PLA, Resin | MakerBot, MakerGear, and MJ, Autodesk Ember | Conventional Camera | Android/IOS |
Silapasuphakornwong et al., 2019 [42] | Near infrared fluorescent dye (Internal patterns) | FFF | ABS | Mutoh Value3D MagiX 2200D | Near Infrared Camera | - |
Silapasuphakornwong et al., 2019 [43] | Near infrared fluorescent dye (barcode patterns) | FFF | ABS | Mutoh Value3D MagiX 2200D | Near Infrared Camera | - |
Dogan et al., 2020 [44] | G-ID (Slicing Parameters | FFF | PLA | Ultimaker 3, Prusa i3 MK3S, Creality CR-10S Pro | Mobile phone application | Android/IOS |
Uyan et al., 2020 [45] | Digital Code (Semi-automated approach) | FFF | Wax | ProJet MJP | Mobile phone application | Android/IOS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usama, M.; Yaman, U. Embedding Information into or onto Additively Manufactured Parts: A Review of QR Codes, Steganography and Watermarking Methods. Materials 2022, 15, 2596. https://doi.org/10.3390/ma15072596
Usama M, Yaman U. Embedding Information into or onto Additively Manufactured Parts: A Review of QR Codes, Steganography and Watermarking Methods. Materials. 2022; 15(7):2596. https://doi.org/10.3390/ma15072596
Chicago/Turabian StyleUsama, Muhammad, and Ulas Yaman. 2022. "Embedding Information into or onto Additively Manufactured Parts: A Review of QR Codes, Steganography and Watermarking Methods" Materials 15, no. 7: 2596. https://doi.org/10.3390/ma15072596