electronics m\py

Article
A 3D Printing Model Watermarking Algorithm Based
on 3D Slicing and Feature Points

Giao N. Pham 1, Suk-Hwan Lee 2, Oh-Heum Kwon 1 and Ki-Ryong Kwon *

1 Department of IT Convergence & Application Engineering, Pukyong National University, Busan 608-737,

Korea; ngocgiaofet@gmail.com (G.N.P.); ohkwn@pknu.ac.kr (O.-H.K.)
Department of Information Security, Tongmyong University, Busan 608-711, Korea; skylee@tu.ac.kr
* Correspondence: krkwon@pknu.ac.kr; Tel.: +82-05-1629-6257

2

Received: 17 January 2018; Accepted: 14 February 2018; Published: 17 February 2018

Abstract: With the increase of three-dimensional (3D) printing applications in many areas of life, a
large amount of 3D printing data is copied, shared, and used several times without any permission
from the original providers. Therefore, copyright protection and ownership identification for 3D
printing data in communications or commercial transactions are practical issues. This paper presents
anovel watermarking algorithm for 3D printing models based on embedding watermark data into the
feature points of a 3D printing model. Feature points are determined and computed by the 3D slicing
process along the Z axis of a 3D printing model. The watermark data is embedded into a feature point
of a 3D printing model by changing the vector length of the feature point in OXY space based on the
reference length. The x and y coordinates of the feature point will be then changed according to the
changed vector length that has been embedded with a watermark. Experimental results verified that
the proposed algorithm is invisible and robust to geometric attacks, such as rotation, scaling, and
translation. The proposed algorithm provides a better method than the conventional works, and the
accuracy of the proposed algorithm is much higher than previous methods.

Keywords: 3D watermarking protocol; 3D printing copyright; 3D identification; 3D model
watermarking; 3D printing model; 3D slicing

1. Introduction

In recent years, three-dimensional (3D) printing has been widely used in many areas of life [1,2].
3D printing technology has revolutionized industry, as it allows users to turn any digital file into a
physical 3D object. Due to the fact that the benefits of 3D printing are enormous in all domains and the
price of a 3D printer is not expensive, an individual user can buy a 3D Printer and download 3D printing
models on the Internet to print physical 3D objects. This does great damage to manufacturers, and
they need a copyright protection solution for 3D printing models in communications or commercial
transactions. Moreover, the original providers also desire means to identify ownership for their
products. So, a watermarking solution is suitable and necessary for ownership identification and
copyright protection of 3D printing [3].

Previously, there have been many watermarking methods proposed for 3D mesh models [4-14].
However, these methods are only useful for the copyright protection of 3D content or visual
applications that use 3D content. They could not be applied to the copyright protection of 3D printing
because the output of 3D printing is a physical 3D object. The issue in 3D printing watermarking is
how to embed watermark data into 3D printing models and then extract the embedded watermark
data from the scanned 3D triangle mesh of a 3D printed object or extract the embedded watermark data
from a watermarked 3D printing model in 3D printing processing. For direction on how to extract the
embedded watermark data from the scanned 3D triangle mesh of a 3D printed object, some techniques

Electronics 2018, 7, 23; doi:10.3390/ electronics7020023 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8064-5594
https://orcid.org/0000-0001-8064-5594
http://dx.doi.org/10.3390/electronics7020023
http://www.mdpi.com/journal/electronics

Electronics 2018, 7,23 20f 13

have been recently proposed by some authors [15,16]. These techniques had to use a 3D Scanner in
order to scan and construct a 3D triangle mesh from a 3D printed object. However, the accuracy of
these methods is very low because they are affected by the resolution of 3D Printers, the quality of 3D
Scanners, and noises in the scanning process.

For meeting the issues related to the copyright protection of 3D printing and the weaknesses of
the previous methods, we proposed a novel watermarking algorithm for 3D printing in this paper.
The main content of the proposed algorithm is to cut a 3D triangle mesh (a 3D printing model) into
slices along the Z axis by the 3D slicing process. Slices are then used to extract the intersected points
between the 3D triangle mesh and the cutting plane. The feature points of the 3D triangle mesh will
be computed from the intersected points and the vertices of the 3D triangle mesh for embedding
watermark data. To clarify the proposed algorithm, we organize our paper as follows: In Section 2,
we look into previous watermarking techniques for 3D models and explain the relation of the 3D
printing process to the proposed algorithm. In Section 3, we show the proposed method in detail.
Experimental results and the evaluation of the proposed scheme will be shown in Section 4. Section 5
shows the conclusion.

2. Related Works

2.1. 3D Model Watermarking

3D model watermarking has been extensively researched since the early 2000s. 3D model
watermarking schemes are generally focused on the geospatial domain and frequency domain.
The main concept of watermarking methods in the geospatial domain is to embed watermark data
by modifying the value of vertices or geometric features, such as length, area, or topology, while the
main concept of watermarking schemes in the frequency domain is to embed watermark data in the
spectrum coefficients of the Discrete Fourier Transform (DFT), Discrete Wavelet Transform (DWT), and
Discrete Cosine Transform (DCT) of a sequence of vertices. However, this is not the end purpose of
3D printing watermarking; the end purpose of 3D printing watermarking is to extract the embedded
watermark data during the 3D printing process or after the 3D printing process. Consequently, the
watermarking schemes for 3D models could not apply to the 3D printing domain.

In the 3D printing watermarking domain, S. Yamazaki et al. [15] proposed a method to extract the
embedded watermark from 3D printed objects that are created from 3D triangle meshes. The watermark
is embedded in the spread spectrum of a 3D triangle mesh and it is then extracted from the scanned 3D
triangle mesh of a 3D printed object. The accuracy of this method is very low because the scanned 3D
triangle mesh has many errors in the scanning process and the spread spectrum of a 3D triangle mesh
is altered after its transformation to the frequency domain. M. Suzuki et al. [16] presented a method
to protect the copyright of 3D printed objects. This method is applied to 3D printers. This method
embeds copyright information inside physical 3D objects fabricated with a 3D printer by forming a fine
structure inside a 3D printed object as a watermark. This method used a complex hardware system of
halogen lights and a laser for experiments, but there is a length limitation on the embedded watermark
bits. Moreover, this method does not show how to extract watermark data from a 3D printed object.
So, it is not flexible and very expensive.

2.2. 3D Printing-Based Watermarking

Currently, 3D printing technology uses 3D triangle meshes [17] to print physical 3D objects. A 3D
triangle mesh is a set of facets. Each facet contains three vertices (a triangle) and a normal vector.
Each vertex is presented by three coordinates X, y, and z. In order to print a physical 3D object, a 3D
triangle mesh must be cut along the Z axis by a cutting plane from bottom to top via the 3D slicing
process [18,19]. The 3D slicing process can be performed by a 3D slicer [20,21]. The output of the
3D slicing process is a set of slices, and the 3D printer prints a physical 3D object from these slices.
Figure 1a shows the general 3D printing process.

Electronics 2018, 7, 23 30f13

As mentioned above, a 3D triangle mesh must be cut into slices along the Z axis by a cutting
plane from bottom to top before printing a physical 3D object. Each slice is a set of the intersected
points between the 3D triangle mesh and the cutting plane. These points are located on a Z plane,
which means that the z coordinate of the intersected points is the same (see Figure 1b). Due to the
fact that the 3D triangle mesh is sliced from bottom to top by a cutting plane, many vertices of the 3D
triangle mesh are cut by the cutting plane. This means that many vertices of the 3D triangle mesh are
the intersected points between the 3D triangle mesh and the cutting plane. We consider these points as
the feature points of a 3D triangle mesh and select them for embedding watermark data.

3D Slicer B 3D Printer
—» 3D Slicing —» -~ — % 3D Printing —>
AR
3D triangle mesh Slices 3D Printed Object
(a)
:) Z / Cutting plane

>

Figure 1. (a) General three-dimensional (3D) Printing Process; (b) 3D Triangle Mesh Slicing in OYZ
space and in OXYZ space.

3. The Proposed Algorithm

3.1. Overview

The proposed algorithm is described in Figure 2. A 3D triangle mesh is cut into slices from
bottom to top along the Z axis via the 3D slicing process. Slices are then used to extract the intersected
points. Besides this, a set of facets is also extracted from the 3D triangle mesh, and facets are then
used for vertices extraction. From a set of vertices and a set of the intersected points, we find the
feature points of the 3D triangle mesh. The feature points of the 3D triangle are the common points
between the vertices of the 3D triangle mesh and the intersected points. After finding the feature
points, watermark data will be embedded in each feature point by changing the vector length of each
feature point in the OXY space based on the reference length. Next, the x and y coordinates of each
feature point will be changed according to the changed vector length that has been embedded with a
watermark. The purpose of not changing the z coordinate of the feature point is to gain feature points
back from the watermarked 3D triangle mesh in the watermark extraction process. This is because
the watermarked 3D triangle mesh will be sliced along the Z axis. If the z coordinate of the feature
points is changed, we cannot find the feature points exactly. After embedding watermark data into
the feature points, the watermarked 3D triangle mesh will be generated. The watermark extraction
process is shown in Figure 2b. It is an inverse of the process for watermark embedding. The details of
watermark embedding will be shown in Section 3.3 and those of watermark extraction will be shown
in Section 3.4.

Electronics 2018, 7,23 40f 13

Slices
' L Intersected Points Intersected Watermarked 3D Watermarked 3D
3D triangle mesh)/ 3D Slicin . — > 8 5 ;
l 3D Slicing Extraction Points triangle generation — Triangle Mesh
Facets Watermark Data
Extraction
Facets Vertices Feature Points
Vertices Feature Points Watermark
Extraction Finding Embedding
(a)
Slices
Watermarked 3D Intersected Points Intersected Extracted
Triangle Mesh — 3D Slicin . —> . Watermark Data
9 & Extraction Points .
A
Facets
Extraction
Vertices Feature Points
Facets § .
Vertices Feature Points ‘Watermark
Extraction Finding Extracting
(b)

Figure 2. The proposed algorithm: (a) watermark embedding and (b) watermark extraction.

3.2. Feature Points Computation

As mentioned above, a 3D triangle mesh contains a set of facets. Facets are connected together to
form a 3D triangle mesh; thus, there are many facets that share the same vertices. So, the number of
vertices of a 3D triangle mesh is always smaller than the number of facets. To be brief, we consider
a 3D triangle mesh M = {F;|i € [1,|M|]}, where F; indicates the i facet and |M| represents the
cardinalities of a 3D triangle mesh M. Given that V is a set of vertices of a 3D triangle mesh, which
is extracted from facets with V. = {v,(x,, yn, zn)|n € [1,Ny]}, Ny represents the cardinalities of V.
Thus, to extract vertices from a 3D triangle mesh, we have to extract facets and then remove the
duplicate vertices as shown in Equation (1). RDV is the Remove Duplicate Vertices function.

V. =RDV ({Fli € [1,M]|]})

_ {vn eRne [1,NV]})

A 3D triangle mesh is sliced into a set of slices by the 3D slicing process. Assume that a 3D triangle
mesh is cut into a set of slices, S = {S5;|t € [1,|S]|]}, where |S| is the number of slices. Each slice is a
set of the intersected points, Sy = {py |k € [1,|S¢|]}, where |S¢| is the number of the intersected points
in slice S¢, and py is presented by the (x4, Yk, zi) coordinates. Now, we can consider that the all of
the intersected points are presented by a set of slices S and described in Equation (2):

S = {pult € [1,1S[],k € [1,|5}. @

The feature points of a 3D triangle mesh are the vertices of the 3D triangle and also the intersected
points. Therefore, they are the common points of the vertices and the intersected points. Suppose Py is
a set of feature points of a 3D triangle mesh; it will be computed by Equation (3). Figure 3 shows the
feature points of a Batman model.

P=VNS = {Pf (Pxf/ Pyf, sz>)f €L, IPfI]} ®)

Electronics 2018, 7, 23 50f13

(a) (b) ()

Figure 3. (a) 3D triangle mesh with vertices; (b) the 3D triangle mesh is cut into slices; and (c) feature
points of the 3D triangle mesh.

3.3. Watermark Embedding

Next, we will embed watermark data into the feature points of the 3D triangle mesh. We can
see that feature points which are located on the same cutting plane have the same z coordinates (see
Figure 4a). In order to extract the embedded watermark, we must find the watermarked feature points
from the watermarked 3D triangle mesh again. Thus, we cannot change the z coordinate of a feature
point after embedding a watermark. This means that we can only change the x and y coordinates of a
feature point. Due to the fact that we can only change the x and y coordinates of feature points, we
have to refer feature points to OXY space (see Figure 4b) and embed watermark data by changing the
vector length of a feature point in OXY space based on the reference length. Figure 4 shows feature
points in OXYZ space and in OXY space.

(a) (b)

Figure 4. (a) Feature points in OXYZ space; and (b) feature points in OXY space.

Let L ¢y, be the vector length of the feature point ps in OXY space. It is calculated by Equation (4).

Let L}xy be the reference length for watermark embedding. To calculate the reference length L}xy, we

consider the integer part of Ly, as L?Z; and the rounding up of Ly, as Lﬁfy" L}”;;, L}?}fy" ,and L;xy are
calculated by Equations (5)—(7), respectively.

Lfvy = \/ (pr)z + (ny)2 G

L7t = IntegerPart (foy)

fxy
= IntegerPart <\/(pr>2 n (ny>2> (5)

L™max = RoundingUp (foy>

fry
= RoundingUp <\/(pr)2 + <pyf)2> (6)

Electronics 2018, 7,23 60f 13

Lmzn Lmax

fry T By
L = =73 @)
The number of watermark bits is equal to the number of feature points. Thus, the watermark
bit wr € {0,1}(f € [1, |P¢|]) is embedded into the feature point py by changing the vector length Ly,
based on the reference length L}xy. If wf = 1, then L Fxy will be transformed into Lj} - that is less
than L}xy. If ws = 0, then Lg,, will be transformed into L;i that is greater than L/ - fxy is the
watermarked vector length of the vector length Ly, changed according to the watermark bit wy as

shown in Equation (8).

if wy = 0 foy }xy ®)
else wy = 1 foy }xy

For satisfying the above embedding condition, the watermarked vector length L} Fy will be
changed as follows:

fxy + ny fxy if foy < L"

fry ©)
No change if Lpy, > L

ifwp=0 Lp, = {
fxy

Lis
Ly — M if Ly, > L,

ifwr=1 L%, = fry . 10
f fry { No change if Lg, < L 10

fry

Figure 5 shows the change of the vector length L., according to the watermark bit w. The vector
length Ly, is represented by the blue point. The watermarked vector length L}xy is represented by
the red point. When wg =1, Ly, is moved to be less than L;Xy if Lpyy > L;xy. When wy =0, Ly, is

moved to be greater than L% if L¢y, < L Ty After embedding the watermark bit wy to the vector

fxy
length L,,, the change rate a; is calculated as shown in Equation (11):

L*

“fy
o (11)

- Lpxy
The watermarked 3D triangle mesh is generated by changing the x and y coordinates of the
feature point p¢ (px £ PYf P2 f) according the change rate as. The feature point py (pXs, Yy, Pz f) is
changed to p} (px}, py}, pz f) that is the watermarked feature point after watermark embedding and

calculated as shown in Equation (12).

pxy = ap.pxs
{ ny: = afpys (12
Lixy < foy foy > foy

wr=0 | /—I\] |

Ly ey L
° foy
¢ L;Xy Lixy < L/zxy /_\L<> L; xy
wp=1 | Q ® | @ |

L Ly Ly

Figure 5. Watermark bit embedding by changing the vector length of a feature point.

Electronics 2018, 7, 23 7 of 13

3.4. Watermark Extracting

The watermark extraction process is similar to the embedding process. Facets are also extracted
from the watermarked 3D triangle mesh. The watermarked 3D triangle mesh is then cut into slices
along the Z axis in order to extract the intersected points. From a set of vertices and a set of the
intersected points, we can find the watermarked feature points of 3D triangle mesh. For each feature
point, we compute the vector length L}xy of the watermarked feature point p}. L?;;, L}?fyx and L}xy are
also calculated respectively as shown in Equations (5)—(7). Finally, the watermark bit can be extracted
by comparing L}xy with L;xy. The condition for watermark extraction is described by Equation (13).

{ if L, > L}, then wp =0 13
else L}txy < L}xy then wy =1

4. Experimental Results and Evaluation

In this section, we experimented on the proposed algorithm with test 3D triangle meshes as
shown in Figure 6. The format of a 3D triangle mesh is an STL file [17]. Detailed information on 3D
triangle meshes is shown in Table 1. Test 3D triangle meshes are cut into slices along the Z axis of the
3D triangle mesh for finding feature points. The number of slices is dependent on both the Z-axis
height of that model and the thickness of the slices. The thickness of the slices is determined by the
user. In experiments, we defined the thickness of slices to be 1 mm. After computing the feature
points, we embed watermark data into the feature points of the 3D triangle mesh. The number of
feature points of each 3D triangle mesh is shown in Table 1. To evaluate the proposed algorithm, we
evaluate the invisibility, robustness, and performance. Section 4.1 shows the invisibility evaluation by
the distance error. Section 4.2 shows the robustness evaluation, and the performance of the proposed
algorithm is shown in Section 4.3.

41V

Lizard People

Rabbit

Lion Polo

Stitch Airplane Swan Chicken Trump

Figure 6. Test Models.

Electronics 2018, 7, 23 8of 13

However, to clarify the proposed algorithm, we printed some physical 3D objects by a XYZ
Printing Pro 3D Printer [22]. Due to the fact that this 3D Printer is a small printer, it could not print the
test models in Figure 6 (these models are large models). So, we did not use the test models in Figure 6.
We used small 3D triangle meshes for the printing experiments. The printing results are shown in
Figure 7. Physical 3D objects are printed from a set of slices after the 3D slicing process. This proves
that we could extract the embedded watermark during the 3D slicing processing of 3D printing.

Figure 7. 3D printed objects.

4.1. Invisibility Evaluation

We calculated the mean Euclidean distance error d"(V, V') between the vertices V' of the
watermarked 3D triangle mesh and the vertices V of the original 3D triangle mesh to evaluate the
invisibility of the proposed algorithm. If the mean Euclidean distance error is small, the invisibility of
the proposed algorithm is high and vice versa. The mean Euclidean distance error d"(V, V') is the
mean distance error of all distance errors and is calculated as shown in Equation (14).

! 1 NV /
(v, V) = 5 LI o)
1

Table 1 shows the mean distance error between the watermarked 3D triangle mesh and the
original 3D triangle mesh corresponding to test 3D triangle meshes. We embedded watermark bits into
test 3D triangle meshes according to the number of feature points. The mean distance error between
the original 3D triangle mesh and the watermarked 3D triangle mesh is very small (see Table 1).
From Equation (14) and Table 1, we can see that the mean distance error is dependent on the number of
watermarked feature points and the number of vertices. Table 1 shows the mean distance errors of the
original models and the watermarked models. It is from 2.6611 x 10~° (minimum) to 1.6932 x 10~*
(maximum) with the test models. This proves that the difference between the watermarked 3D triangle
mesh and the original 3D triangle mesh is very small. Consequently, the invisibility of the proposed
algorithm is very high. If we cluster 3D triangle meshes that have a similar number of feature points
into groups, we can see that the mean distance error between the original 3D triangle mesh and the
watermarked 3D triangle mesh is increased according to the number of feature points. For example:
the cluster “Rabbit, Batman, and Lizard People” has a mean distance error of 2.0630 x 1079, the cluster

Electronics 2018, 7,23 90of 13

“Bear, Yoda, and Lion” has a mean distance error of 3.6195 x 10~°, and the cluster “Airplane, Chicken
Trump, and Swan” has a mean distance error of 0.7020 x 10~%. Figure 8 shows the mean distance error
according to the number of feature points.

Table 1. Distance Error.

Name # Vertices # Feature Point Distance Error
Rabbit 10,530 11 2.6611 x 10~°
Batman 6785 12 0.1079 x 10
Lizard People 34,625 19 3.4201 x 10~°
Bear 20,248 34 0.1099 x 10~°
Yoda 24,910 34 7.0214 x 10~°
Lion 39,583 35 3.7276 x 10~°
Tower 1311 48 1.6932 x 104
Polo 8526 263 1.5386 x 1074
Stitch 384,034 737 0.1020 x 10~*
Airplane 2796 1072 0.7655 x 104
Chicken Trump 49,424 1194 1.2391 x 1074
Swan 70,682 1587 0.1013 x 1074

80

—@— Distance error accoding to number of feature points

Distance Error

O 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400

Number of feature points

Figure 8. Distance error according to the number of feature points.

4.2. Robustness Evaluation

To evaluate the robustness of the proposed algorithm, we calculate the accuracy of the proposed
algorithm with attacks, such as rotation, scaling, translation, and random noises. Translation and
rotation only change the spatial location of the 3D triangle mesh in OXYZ space. Scaling changes the
size of the 3D triangle mesh. With a rotation attack, it rotates the 3D triangle mesh by an angle; thus,
we only align the 3D triangle mesh and slice the 3D triangle mesh along the Z axis for finding feature
points. In 3D printing processing, all 3D triangle meshes must be sliced along the Z axis. So, rotation
does not affect the watermark extraction process. This means that the proposed algorithm is robust to
rotation. With translation, it only moves the position of 3D triangle meshes in OXYZ space. It does not
change the Z axis and the volume of the 3D triangle mesh. Thus, when the mesh is cut by the cutting
plane from bottom to top, the number of slices and the shape of slices are not changed. This means

Electronics 2018, 7,23 10 of 13

that the feature points of the 3D triangle mesh are not changed. So, translation does not affect the
watermark extraction process. With a scaling attack, it increases or reduces the size of the 3D triangle
mesh but it does not change the center of the 3D triangle mesh. To re-scale, we have two ways. In the
first way, we find the highest vertex and the lowest vertex on the original 3D triangle mesh. We then
calculate the distance between these vertices. With the scaled 3D triangle mesh, we also perform a
similar calculation. Finally, we compare the distances to find the scale-ratio for the re-scaling process.
In the second way, we find the center of the 3D triangle mesh. Because a scaling attack does not
change the center of the 3D triangle mesh, we can consider the center of the 3D triangle mesh to be
the origin coordinates and calculate the distance from the center of the 3D triangle mesh to the lowest
vertex or to the highest vertex. Finally, we also compare the distances to find the scale-ratio for the
re-scaling process. In order to evaluate the robustness of the proposed algorithm with random noises,
we experimented with random noises that have ratios of 1%, 5%, and 10%, respectively.

We calculate the accuracy by comparing the extracted watermark data with the original

watermark data:

Accuracy = Ext.ra.cted watermark x 100%. (15)
Original watermark

The accuracy of the proposed algorithm with random noises is shown in Table 2. With differential
noises, the accuracy with each 3D triangle mesh is also different. The reason for this difference is
noise affecting both the feature points and the height of the 3D triangle mesh. Random noise firstly
changes the coordinates of the vertices, which changes the height of a 3D triangle mesh. This moves
the number of slices and the intersected points. Therefore, the feature points of 3D triangle meshes are
also changed. Secondly, random noise directly affects the feature points of a 3D triangle mesh; thus,
the extracted watermark bits are incorrect. From Table 2, we can see that with no noise the accuracy
is 100%, while with noises that have ratios of 1%, 5%, and 10%, respectively, the average accuracy is
decreased from 78.05% to 57.24%.

We compare the robustness of the proposed algorithm with the conventional works by comparing
the accuracy of methods with noise attacks. In Mona’s method [9], he experimented with four models
and with noises that have ratios of 0.1%, 0.3%, and 0.5%, respectively. The accuracy of Mona’s method
is decreased from 99.30% to 81.92% with noises that have ratios of 0.1%, 0.3%, and 0.5%. In Rolland’s
method [10], he experimented with 13 models with noises that have ratios of 0.1%, 1%, and 5%,
respectively. The accuracy of Rolland method is decreased from 98% to approximately 53%. Due to the
fact that the conventional works experimented with very low noises, the proposed algorithm is more
robust than the conventional works. Figure 9 shows the robustness comparison between the proposed
algorithm and the conventional works.

Table 2. Robustness Evaluation.

Accuracy (%)
Name
No Noise Noise 1% Noise 5% Noise 10%

Rabbit 100 100 100 54.54
Batman 100 83.33 58.33 58.33
Lizard People 100 94.74 52.63 57.89
Bear 100 94.12 32.35 52.94
Yoda 100 100 76.47 76.47
Lion 100 45.71 45.71 51.43
Tower 100 50.00 58.33 58.33
Polo 100 80.61 62.74 51.33
Stitch 100 75.71 51.29 52.78
Airplane 100 99.22 83.12 68.67
Chicken Trump 100 58.46 51.67 53.01
Swan 100 54.66 4851 51.21

Average 100 78.05 60.10 57.24

Electronics 2018, 7,23 11 of 13

120
—@— Proposed Method
100 —&— Rolland's Method
—v— Mona's Method
80
g
oy
S 60
]
[&)
(&)
<
40
20
0 1 1 1 1 1 1
0 2 4 6 8 10
Noise (%)

Figure 9. Robustness of the proposed method with noise attack.

4.3. Performance Evaluation

In order to evaluate the performance of the proposed algorithm, we compare the accuracy of the
proposed algorithm with the recent proposed methods for 3D printing. In the Yamazaki method [15],
the watermark data is embedded by inserting watermark bits into the spectrum of decomposition and
modulation in the frequency domain. Watermark data is extracted from the scanned 3D triangle mesh
of 3D printed objects. The weakness of the Yamazaki method is that the length of watermark bits is
fixed and equals 256 bits. Therefore, there is a limitation on the number of watermark bits that can
be embedded into 3D triangle meshes. Moreover, the spectrum of decomposition and modulation is
affected by the transformation process from the spatial domain to the frequency domain and by noise
in the 3D scanning process. So, the percentage to be precise for a casting object is 12.8% in Yamazaki’s
method. This means we could consider that the accuracy of Yamazaki method is 12.8%. In Suzuki’s
method [16], the watermark data is embedded into the 3D printed object in the 3D printing process by
a halogen light and laser system. It requires a complex hardware system, but it could not embed all
expected watermark bits inside the 3D printed object. In addition, Suzuki’s method does not describe
how to extract watermark data from 3D printed objects. Finally, Suzuki did not show the accuracy of
his method. In our method, the accuracy is 100% without noise and decreases from 78.05% to 57.24%
with noises that have ratios of 1%, 5%, and 10%, respectively. This proves that the performance of the
proposed algorithm is higher than previous methods. Assuming that in a real environment noise is
always 1%, the accuracy of the proposed algorithm is 78.05%. Figure 10 shows the performance of the
proposed algorithm compared to previous methods. Consequently, the proposed algorithm is better
than previous methods.

Electronics 2018, 7,23 12 of 13

100

80

[o2]
o
T

Accuracy (%)

N
o
T

20

Proposed Algorithm Yamazaki Method Suzuki Method

Figure 10. Performance of the proposed algorithm compared to other methods.

5. Conclusions

We proposed a novel watermarking algorithm for 3D printing without a 3D scanner in this
paper. The proposed algorithm embeds watermark data to the feature points of a 3D triangle mesh by
changing the vector length of feature points in OXY space. The feature points of a 3D triangle mesh are
computed from the vertices of 3D triangle meshes and the intersected points between the 3D triangle
mesh and the cutting plane. Experiments proved that the proposed algorithm is invisible and robust
to geometric attacks, such as rotation, translation, and scaling. The accuracy of the proposed algorithm
is higher than that of previous methods. Compared to the conventional works, the robustness of the
proposed algorithm is better than that of the conventional works. At present, we are finding the way to
integrate our algorithm into applications for 3D Printers. In addition, we are improving the proposed
algorithm by changing the thickness of the slice in the 3D printing process to remove effects on the
slices. Next time, we will consider applying the proposed algorithm to a copyright protection system
or 3D watermarking protocol or experiment on the proposed algorithm with 3D Printers.

Acknowledgments: This research is supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2016R1D1A3B03931003,
No. 2017R1A2B2012456), the MSIP (Ministry of Science and ICT), Korea, under the Grand Information Technology
Research Center support program (IITP-2017-2016-0-00318) supervised by the IITP (Institute for Information
& communications Technology Promotion), and the Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2015-0-00225) and the Brain Busan 21 (BB21)
project in 2017.

Author Contributions: In this research activity, all of the authors joined and researched in the data analysis and
preprocessing phases, the simulation, the results analysis and discussion, and the manuscript’s preparation. All of
the authors have approved the submitted manuscript. All of the authors equally contributed to the writing of
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2018, 7,23 13 of 13

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

How 3D Printing Works: The Vision, Innovation and Technologies Behind Inkjet 3D Printing; 3D Systems: Rock Hill,
CA, USA, 2012; Available online: http://www.officeproductnews.net/sites/default/files /3dWP_0.pdf
(accessed on 16 February 2018).

Lidia, H.A.; Paul, A.].; Jose, R.J.; Will, H.; Vincent, C. Ascent. White Paper: 3D Printing; Atos: Irving, TX,
USA, 2014; Available online: https://atos.net/wp-content/uploads/2016/06/01052014- AscentWhitePaper-
3dPrinting-1.pdf (accessed on 16 February 2018).

Ira, S.; Parker, S. Copyright Issues in 3D Printing. In Proceedings of the International Technology Law
Conference, Paris, France, 1-14 October 2014.

Ai, Q. Liu, Q.; Zhou, D; Yang, L.; Xi, Q. A new digital watermarking scheme for 3D triangular mesh models.
J. Signal Process. 2009, 89, 2159-2170. [CrossRef]

Tamane, C.; Ratnadeep, R. Blind 3D Model Watermarking Based on Multi-Resolution Representation and
Fuzzy Logic. Int. . Comput. Sci. Inf. Technol. 2012, 4, 117-126. [CrossRef]

Tan, X.H. A 3D Model Asymmetric Watermarking Algorithm Based on Optimization Statistics.]. Theor. Appl.
Inf. Technol. 2011, 51, 175-181.

Hu, Q.; Lang, Z. The study of 3D Digital Watermarking Algorithm Which is based on a Set of Complete
System of Legendre Orthogonal Function. Open Autom. Control Syst. J. 2014, 6, 1710-1716. [CrossRef]

Liu, J.; Wang, Y.; He, W,; Li, Y. A New Watermarking Method of 3D Mesh Model. Indones. |. Electr. Eng. 2014,
12,1610-1617. [CrossRef]

Mona, M; Ella, A.; Hoda, O. Robust Watermarking Approach for 3D Triangular Mesh using Self Organization
Map. In Proceedings of the 8th International Conference on Computer Engineering & Systems, Cairo, Egypt,
26-28 November 2013; pp. 99-104.

Rolland, X.; Do, D.; Pierre, A. Triangle Surface Mesh Watermarking based on a Constrained Optimization
Framework. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1491-1501. [CrossRef]

Ho, J.U,; Kim, D.G.; Choi, S.H.; Lee, H.K. 3D Print-Scan Resilient Watermarking Using a Histogram-Based
Circular Shift Coding Structure. In Proceedings of the 3rd ACM Workshop on Information Hiding and
Multimedia Security, Portland, OR, USA, 17-19 June 2015; pp. 115-121.

Hou, J.U.; Kim, D.G.; Lee, HK. Blind 3D Mesh Watermarking for 3D Printed Model by Analyzing Layering
Artifact. EEE Trans. Inf. Forensics Secur. 2017, 12, 2712-2725. [CrossRef]

Feng, X.; Liu, Y.; Fang, L. Digital Watermark of 3D CAD Product Model. Int. J. Secur. Appl. 2015, 9, 305-320.
[CrossRef]

Wang, Y,; Jing, L.; Yang, Y.; Ma, D.; Liu, R. 3D model watermarking algorithm robust to geometric attacks.
IET Image Proc. 2017, 11, 822-832. [CrossRef]

Yamazaki, S.; Satoshi, K.; Masaaki, M. Extracting Watermark from 3D Prints. In Proceedings of the 22nd
International Conference on Pattern Recognition, Stockholm, Sweden, 24-28 August 2014; pp. 4576-4581.
Suzuki, M.; Piyarat, S.; Kazutake, U.; Hiroshi, U.; Takashima, Y. Copyright Protection for 3D Printing by
Embedding Information inside Real Fabricated Objects. In Proceedings of the 10th International Conference
on Computer Vision Theory and Applications, Berlin, Germany, 11-14 March 2015; pp. 180-185.

STL Format in 3D Printing. Available online: https://all3dp.com/what-is-stl-file-format-extension-3d-printing /
(accessed on 13 February 2018).

Munir, E. Slicing 3D CAD Model in STL Format and Laser Path Generation. Int. |. Innov. Manag. Technol.
2013, 4, 410-413. [CrossRef]

Vatani, M.; Rahimi, R.; Brazandeh, F.; Sanatinezhad, A. An Enhanced Slicing Algorithm Using Nearest
Distance Analysis for Layer Manufacturing. Int. . Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2009, 3, 74-79.
3D Slicer. Available online: https:/ /www.slicer.org/ (accessed on 13 February 2018).

KIS Slicer. Available online: http:/ /www.kisslicer.com/ (accessed on 13 February 2018).

XYZ Pro 3 in 1 Printer. Available online: https://www.xyzprinting.com/en-US/product/da-vinci-1-0-pro-
3-in-1 (accessed on 13 February 2018).

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://www.officeproductnews.net/sites/default/files/3dWP_0.pdf
https://atos.net/wp-content/uploads/2016/06/01052014-AscentWhitePaper-3dPrinting-1.pdf
https://atos.net/wp-content/uploads/2016/06/01052014-AscentWhitePaper-3dPrinting-1.pdf
http://dx.doi.org/10.1016/j.sigpro.2009.04.031
http://dx.doi.org/10.5121/ijcsit.2012.4110
http://dx.doi.org/10.2174/1874444301406011710
http://dx.doi.org/10.11591/telkomnika.v12i2.3853
http://dx.doi.org/10.1109/TIFS.2014.2336376
http://dx.doi.org/10.1109/TIFS.2017.2718482
http://dx.doi.org/10.14257/ijsia.2015.9.9.27
http://dx.doi.org/10.1049/iet-ipr.2016.0927
https://all3dp.com/what-is-stl-file-format-extension-3d-printing/
http://dx.doi.org/10.7763/IJIMT.2013.V4.431
https://www.slicer.org/
http://www.kisslicer.com/
https://www.xyzprinting.com/en-US/product/da-vinci-1-0-pro-3-in-1
https://www.xyzprinting.com/en-US/product/da-vinci-1-0-pro-3-in-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	3D Model Watermarking
	3D Printing-Based Watermarking

	The Proposed Algorithm
	Overview
	Feature Points Computation
	Watermark Embedding
	Watermark Extracting

	Experimental Results and Evaluation
	Invisibility Evaluation
	Robustness Evaluation
	Performance Evaluation

	Conclusions
	References

