A Comparative Study of Aluminium and Titanium Warm Sprayed Coatings on AZ91E Magnesium Alloy
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Warm Spraying Process
2.3. Microstructural Characterization
2.4. Roughness
2.5. Microhardness Test
2.6. Adhesion Test
2.7. Wear Test
2.8. Salt Spray Test
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Roughness
3.3. Salt Spray Test
3.4. Adhesion
3.5. Wear Test
4. Conclusions
- Increasing nitrogen flow rate (NFR) during WS deposition, which decreases the process temperature, led to increased porosity and surface roughness of studied coatings. NFR had a much more pronounced influence on the Ti coating microstructure than Al.
- Ti coatings exhibited higher porosity and higher surface roughness than Al coatings due to higher mechanical properties, in particular yield strength, and thus higher requirements for critical velocity Vc.
- Despite higher porosity and surface roughness, Ti coatings with higher hardness exhibited much lower volume wear loss in pin on disk wear tests compared to Al coatings and AZ91E substrate material.
- The performed pull-off test could not determine the adhesion strength of the deposited WS coatings, but the minimal adhesion strength could be evaluated for Al coatings.
- Ti coating porosity led to poor corrosion resistance in the salt spray test since NaCl solution could penetrate the coating, accelerated galvanic corrosion that occurred at the substrate/coating interface. Al coatings provided strong corrosion protection during 96 h of salt spray test without signs of substrate corrosion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mordike, B.L.; Ebert, T. Magnesium Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Gray, J.E.; Luan, B. Protective Coatings on Magnesium and Its Alloys—A Critical Review. J. Alloys Compd. 2002, 336, 88–113. [Google Scholar] [CrossRef]
- Umehara, H.; Terauchi, S.; Takaya, M. Structure and Corrosion Behavior of Conversion Coatings on Magnesium Alloys. Mater. Sci. Forum 2000, 350, 273–282. [Google Scholar] [CrossRef]
- Simaranov, A.Y.; Marshakov, A.I.; Mikhailovskii, Y.N. The Composition and Protective Properties of Chromate Conversion Coatings on Magnesium. Prot. Met. 1992, 28, 576–580. [Google Scholar]
- Ray, R.R. Adverse Hematological Effects of Hexavalent Chromium: An Overview. Interdiscip. Toxicol. 2016, 9, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Halasova, E.; Matakova, T.; Musak, L.; Polakova, V.; Letkova, L.; Dobrota, D.; Vodicka, P. Evaluating Chromosomal Damage in Workers Exposed to Hexavalent Chromium and the Modulating Role of Polymorphisms of DNA Repair Genes. Int. Arch. Occup. Environ. Health 2012, 85, 473–481. [Google Scholar] [CrossRef]
- Askham, C.; Gade, A.L.; Hanssen, O.J. Combining REACH, Environmental and Economic Performance Indicators for Strategic Sustainable Product Development. J. Clean. Prod. 2012, 35, 71–78. [Google Scholar] [CrossRef]
- Song, G.L.; Shi, Z. Corrosion Mechanism and Evaluation of Anodized Magnesium Alloys. Corros. Sci. 2014, 85, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.R.; Hou, B.R.; Wang, J.; Wang, Q.; Li, W.Y. Effect of Process Conditions on Microstructure and Corrosion Resistance of Cold-Sprayed Ti Coatings. J. Therm. Spray Technol. 2008, 17, 736–741. [Google Scholar] [CrossRef]
- Wang, H.R.; Li, W.Y.; Ma, L.; Wang, J.; Wang, Q. Corrosion Behavior of Cold Sprayed Titanium Protective Coating on 1Cr13 Substrate in Seawater. Surf. Coat. Technol. 2007, 201, 5203–5206. [Google Scholar] [CrossRef]
- Irissou, E.; Arsenault, B. Corrosion Study of Cold Sprayed Aluminum Coatings onto Al 7075 Alloy. Coating 2007, 549–554. [Google Scholar]
- Silva, F.S.D.; Bedoya, J.; Dosta, S.; Cinca, N.; Cano, I.G.; Guilemany, J.M.; Benedetti, A.V. Corrosion Characteristics of Cold Gas Spray Coatings of Reinforced Aluminum Deposited onto Carbon Steel. Corros. Sci. 2017, 114, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Spencer, K.; Birbilis, N.; Zhang, M.X. The Influence of Ceramic Particles on Bond Strength of Cold Spray Composite Coatings on AZ91 Alloy Substrate. Surf. Coat. Technol. 2010, 205, 50–56. [Google Scholar] [CrossRef]
- Tao, Y.; Xiong, T.; Sun, C.; Jin, H.; Du, H.; Li, T. Effect of α-Al2O3 on the Properties of Cold Sprayed Al/α-Al2O3 Composite Coatings on AZ91D Magnesium Alloy. Appl. Surf. Sci. 2009, 256, 261–266. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Farooq Khan, M.U.; Saadeh, Y.; Kay, C.M.; Gupta, R.K.; Kasar, A.K.; Kumar, P.; Misra, M.; Menezes, P.L.; Bakhsheshi-Rad, H.R. Enhanced Corrosion Resistance and Surface Bioactivity of AZ31B Mg Alloy by High Pressure Cold Sprayed Monolayer Ti and Bilayer Ta/Ti Coatings in Simulated Body Fluid. Mater. Chem. Phys. 2020, 256, 123627. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Kasar, A.K.; Khan, M.U.F.; Menezes, P.L.; Kay, C.M.; Misra, M.; Gupta, R.K. Improvement of Wear, Pitting Corrosion Resistance and Repassivation Ability of Mg-Based Alloys Using High Pressure Cold Sprayed (HPCS) Commercially Pure-Titanium Coatings. Coatings 2021, 11, 57. [Google Scholar] [CrossRef]
- Lütjering, G.; Williams, J.C. Titanium; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Sienkiewicz, J.; Kuroda, S.; Murakami, H.; Araki, H.; Giżyński, M.; Kurzydłowski, K.J. Microstructure and Oxidation Performance of TiAl-(Cr, Nb, Ta) Coatings Fabricated by Warm Spray and High-Velocity Oxy-Fuel Spraying. J. Therm. Spray Technol. 2019, 28, 563–579. [Google Scholar] [CrossRef] [Green Version]
- Hung, J.H.H.; Chiu, Y.L.; Liang, J. Reciprocating wear properties of thermal sprayed titanium aluminide-alumina composite coatings. Surf. Coat. Technol. 2008, 202, 5599–5602. [Google Scholar] [CrossRef]
- Hussain, T.; McCartney, D.G.; Shipway, P.H.; Marrocco, T. Corrosion Behavior of Cold Sprayed Titanium Coatings and Free Standing Deposits. J. Therm. Spray Technol. 2011, 20, 260–274. [Google Scholar] [CrossRef] [Green Version]
- Marrocco, T.; Hussain, T.; McCartney, D.G.; Shipway, P.H. Corrosion Performance of Laser Posttreated Cold Sprayed Titanium Coatings. J. Therm. Spray Technol. 2011, 20, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Siddique, S.; Li, C.X.; Bernussi, A.A.; Hussain, S.W.; Yasir, M. Enhanced Electrochemical and Tribological Properties of AZ91D Magnesium Alloy via Cold Spraying of Aluminum Alloy. J. Therm. Spray Technol. 2019, 28, 1739–1748. [Google Scholar] [CrossRef]
- DeForce, B.; Eden, T.; Potter, J.; Champagne, V.; Leyman, P.; Helfritch, D. Application of Aluminum Coatings for the Corrosion Protection of Magnesium by Cold Spray. In Proceedings of the Tri-Service Corrosion Conference, Denver, CO, USA, 3–7 December 2007; pp. 1–16. [Google Scholar]
- Papyrin, A.; Kosarev, V.; Klinkov, S.; Alkimov, A.; Fomin, V. High-Velocity Interaction of Particles with the Substrate. Experiment and Modeling. Cold Spray Technol. 2007, 33–118. [Google Scholar] [CrossRef]
- Gärtner, F.; Stoltenhoff, T.; Schmidt, T.; Kreye, H. The Cold Spray Process and Its Potential for Industrial Applications. J. Therm. Spray Technol. 2006, 15, 223–232. [Google Scholar] [CrossRef]
- Kawakita, J.; Katanoda, H.; Watanabe, M.; Yokoyama, K.; Kuroda, S. Warm Spraying: An Improved Spray Process to Deposit Novel Coatings. Surf. Coat. Technol. 2008, 202, 4369–4373. [Google Scholar] [CrossRef]
- Kuroda, S.; Kawakita, J.; Watanabe, M.; Katanoda, H. Warm Spraying—A Novel Coating Process Based on High-Velocity Impact of Solid Particles. Sci. Technol. Adv. Mater. 2008, 9, 033002. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Atrens, A. Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Adv. Eng. Mater. 2003, 5, 837–858. [Google Scholar] [CrossRef]
- Kuroda, S.; Watanabe, M.; Kim, K.H.; Katanoda, H. Current Status and Future Prospects of Warm Spray Technology. J. Therm. Spray Technol. 2011, 20, 653–676. [Google Scholar] [CrossRef] [Green Version]
- Molak, R.M.; Araki, H.; Watanabe, M.; Katanoda, H.; Ohno, N.; Kuroda, S. Warm Spray Forming of Ti-6Al-4V. J. Therm. Spray Technol. 2014, 23, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Molak, R.M.; Araki, H.; Watanabe, M.; Katanoda, H.; Ohno, N.; Kuroda, S. Effects of Spray Parameters and Heat Treatment on the Microstructure and Mechanical Properties of Titanium Coatings Formed by Warm Spraying. J. Therm. Spray Technol. 2015, 24, 1459–1479. [Google Scholar] [CrossRef]
- Molak, R.M.; Araki, H.; Watanabe, M.; Katanoda, H.; Ohno, N.; Kuroda, S. Effects of Spray Parameters and Post-Spray Heat Treatment on Microstructure and Mechanical Properties of Warm-Sprayed Ti-6Al-4V Coatings. J. Therm. Spray Technol. 2017, 26, 627–647. [Google Scholar] [CrossRef] [Green Version]
- Obasih, C. Accurate Porosity Measurement in Thermal Spray Coatings; Buehler: Lake Bluff, IL, USA, 2014; Volume 7. [Google Scholar]
- Deshpande, S.; Kulkarni, A.; Sampath, S.; Herman, H. Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering. Surf. Coat. Technol. 2004, 187, 6–16. [Google Scholar] [CrossRef]
- Puerta, D.; Sabine, J.; Geary, A. Metallographic Characterization of Thermal Spray Microstructures. Microsc. Microanal. 2006, 12 (Suppl. 2), 1602–1603. [Google Scholar] [CrossRef] [Green Version]
- Ura-Bińczyk, E.; Morończyk, B.; Kuroda, S.; Araki, H.; Jaroszewicz, J.; Molak, R.M. Corrosion Resistance of Aluminum Coatings Deposited by Warm Spraying on AZ91E Magnesium Alloy. Corrosion 2019, 75, 668–679. [Google Scholar] [CrossRef]
- Morończyk, B.; Ura-Bińczyk, E.; Kuroda, S.; Jaroszewicz, J.; Molak, R.M. Microstructure and Corrosion Resistance of Warm Sprayed Titanium Coatings with Polymer Sealing for Corrosion Protection of AZ91E Magnesium Alloy. Surf. Coat. Technol. 2019, 363, 142–151. [Google Scholar] [CrossRef]
- Rolland, G.; Borit, F.; Guipont, V.; Jeandin, M.; Bara, L.; Bourda, C. Three-Dimensional Analysis of Cold Sprayed Coatings Using Microtomography. In Proceedings of the International Thermal Spray Conference, Maastrich, The Netherlands, 2–4 June 2008; pp. 607–610. [Google Scholar]
- Katanoda, H.; Sun, B.; Ohno, N.; Fukanuma, H.; Kuroda, S.; Watanabe, M.; Ohashi, O. Design and Development of High-Pressure Warm Spray Gun. In Proceedings of the International Thermal Spray Conference, Busan, Korea, 13–15 May 2013. [Google Scholar]
- Segall, A.E.; Papyrin, A.N.; Conway, J.C.; Shapiro, D. A Cold-Gas Spray Coating Process for Enhancing Titanium. JOM 1998, 50, 52–54. [Google Scholar] [CrossRef]
- Kosarev, V.F.; Klinkov, S.V.; Alkhimov, A.P.; Papyrin, A.N. On Some Aspects of Gas Dynamics of the Cold Spray Process. J. Therm. Spray Technol. 2003, 12, 265–281. [Google Scholar] [CrossRef]
- Stoltenhoff, T.; Kreye, H.; Richter, H.J. An Analysis of the Cold Spray Process and Its Coatings. J. Therm. Spray Technol. 2002, 11, 542–550. [Google Scholar] [CrossRef]
- Zahiri, S.H.; Antonio, C.I.; Jahedi, M. Elimination of Porosity in Directly Fabricated Titanium via Cold Gas Dynamic Spraying. J. Mater. Process. Technol. 2009, 209, 922–929. [Google Scholar] [CrossRef]
- Gulizia, S.; Trentin, A.; Vezzù, S.; Rech, S.; King, P.; Jahedi, M.; Guagliano, M. Characterisation of Cold Spray Titanium Coatings. Mater. Sci. Forum 2010, 654–656, 898–901. [Google Scholar] [CrossRef]
- Williams, J.C. Engineering Materials and Processes; Springer: New York, NY, USA, 2006; 306p. [Google Scholar]
- Diab, M.; Pang, X.; Jahed, H. The Effect of Pure Aluminum Cold Spray Coating on Corrosion and Corrosion Fatigue of Magnesium (3% Al-1% Zn) Extrusion. Surf. Coat. Technol. 2017, 309, 423–435. [Google Scholar] [CrossRef]
- Assadi, H.; Gärtner, F.; Stoltenhoff, T.; Kreye, H. Bonding Mechanism in Cold Gas Spraying. Acta Mater. 2003, 51, 4379–4394. [Google Scholar] [CrossRef]
- Klinkov, S.V.; Kosarev, V.F. Measurements of Cold Spray Deposition Efficiency. J. Therm. Spray Technol. 2006, 15, 364–371. [Google Scholar] [CrossRef]
- Schmidt, T.; Assadi, H.; Gärtner, F.; Richter, H.; Stoltenhoff, T.; Kreye, H.; Klassen, T. From Particle Acceleration to Impact and Bonding in Cold Spraying. J. Therm. Spray Technol. 2009, 18, 794–808. [Google Scholar] [CrossRef] [Green Version]
- Fukanuma, H.; Ohno, N. A Study of Adhesive Strength of Cold Spray Coatings. In Proceedings of the International Thermal Spray Conference, Osaka, Japan, 10–12 May 2004; pp. 329–334. [Google Scholar]
- Kuroda, S.; Molak, R.M.; Watanabe, M.; Araki, H.; Katanoda, H.; Sun, B.; Ohno, N.; Fukanuma, H. Velocity Measurement of Sprayed Particles and Coatings Fabrication of Titanium Alloys by High-Pressure Warm Spray. In Proceedings of the International Thermal Spray Conference, Busan, Korea, 13–15 May 2013; pp. 263–268. [Google Scholar]
- Garbacz, H.; Gradzka-Dahlke, M.; Kurzydłowski, K.J. The Tribological Properties of Nano-Titanium Obtained by Hydrostatic Extrusion. Wear 2007, 263, 572–578. [Google Scholar] [CrossRef]
- Mathavan, J.J.; Patnaik, A. Analysis of Wear Properties of Aluminium Based Journal Bearing Alloys with and without Lubrication. In Proceedings of the International Conference on Advances in Materials and Manufacturing Applications (IConAMMA-2016), Bangalore, India, 14–16 July 2016; Volume 149. [Google Scholar] [CrossRef]
- Kato, K. Classifi cation of Wear Mechanisms/Models. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 349–355. [Google Scholar] [CrossRef]
- Yusof, S.N.A.; Manap, A.; Afandi, N.M.; Salim, M.; Misran, H. Mechanical and Wear Properties of Aluminum Coating Prepared by Cold Spraying. AIP Conf. Proc. 2015, 1669. [Google Scholar] [CrossRef]
- Pitchuka, S.B.; Boesl, B.; Zhang, C.; Lahiri, D.; Nieto, A.; Sundararajan, G.; Agarwal, A. Dry Sliding Wear Behavior of Cold Sprayed Aluminum Amorphous/Nanocrystalline Alloy Coatings. Surf. Coat. Technol. 2014, 238, 118–125. [Google Scholar] [CrossRef]
- Shockley, J.M.; Strauss, H.W.; Chromik, R.R.; Brodusch, N.; Gauvin, R.; Irissou, E.; Legoux, J.G. In Situ Tribometry of Cold-Sprayed Al-Al2O3 Composite Coatings. Surf. Coat. Technol. 2013, 215, 350–356. [Google Scholar] [CrossRef]
- Spencer, K.; Fabijanic, D.M.; Zhang, M.X. The Use of Al-Al2O3 Cold Spray Coatings to Improve the Surface Properties of Magnesium Alloys. Surf. Coat. Technol. 2009, 204, 336–344. [Google Scholar] [CrossRef]
l.p. | Coating | Fuel/Gas Flow [m3/min] | Combustion Pressure (Mpa) | Spraying Distance (mm) | Barrel Length (mm) | Powder Flow Rate (g/min) | ||
---|---|---|---|---|---|---|---|---|
Fuel | Oxygen | Nitrogen | ||||||
1 | Al_1.0 | 0.34 | 0.69 | 1.00 | 1 | 200 | 200 | 45 |
2 | Al_1.5 | 0.29 | 0.59 | 1.50 | ||||
3 | Al_2.0 | 0.27 | 0.55 | 2.00 | ||||
4 | Ti_0.75 | 0.36 | 0.73 | 0.75 | ||||
5 | Ti_1.0 | 0.34 | 0.69 | 1.00 | ||||
6 | Ti_1.25 | 0.32 | 0.59 | 1.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molak, R.M.; Morończyk, B.; Ura-Bińczyk, E.; Pakieła, Z.; Żórawski, W.; Kurzydłowski, K.J.; Kuroda, S. A Comparative Study of Aluminium and Titanium Warm Sprayed Coatings on AZ91E Magnesium Alloy. Materials 2022, 15, 2005. https://doi.org/10.3390/ma15062005
Molak RM, Morończyk B, Ura-Bińczyk E, Pakieła Z, Żórawski W, Kurzydłowski KJ, Kuroda S. A Comparative Study of Aluminium and Titanium Warm Sprayed Coatings on AZ91E Magnesium Alloy. Materials. 2022; 15(6):2005. https://doi.org/10.3390/ma15062005
Chicago/Turabian StyleMolak, Rafał Maksymilian, Bartosz Morończyk, Ewa Ura-Bińczyk, Zbigniew Pakieła, Wojciech Żórawski, Krzysztof Jan Kurzydłowski, and Seiji Kuroda. 2022. "A Comparative Study of Aluminium and Titanium Warm Sprayed Coatings on AZ91E Magnesium Alloy" Materials 15, no. 6: 2005. https://doi.org/10.3390/ma15062005
APA StyleMolak, R. M., Morończyk, B., Ura-Bińczyk, E., Pakieła, Z., Żórawski, W., Kurzydłowski, K. J., & Kuroda, S. (2022). A Comparative Study of Aluminium and Titanium Warm Sprayed Coatings on AZ91E Magnesium Alloy. Materials, 15(6), 2005. https://doi.org/10.3390/ma15062005