X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Eijk, C.W.E. Inorganic scintillators in medical imaging. Phys. Med. Biol. 2002, 47, R85–R106. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cheng, Y.; Yang, Y.; Peng, Y.; Li, H.; Xiong, Y.; Zhu, T. Image reconstruction using multi-energy system matrices with a scintillator-based gamma camera for nuclear security applications. Appl. Radiat. Isot. 2020, 163, 109217. [Google Scholar] [CrossRef] [PubMed]
- Picozza, P.; Galper, A.M.; Castellini, G.; Adriani, O.; Altamura, F.; Ambriola, M.; Barbarino, G.C.; Basili, A.; Bazilevskaja, G.A.; Bencardino, R.; et al. PAMELA—A payload for antimatter matter exploration and light-nuclei astrophysics. Astropart. Phys. 2007, 27, 296–315. [Google Scholar] [CrossRef]
- Mao, R.; Zhang, L.; Zhu, R.-Y. Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics. IEEE Trans. Nucl. Sci. 2008, 55, 2425–2431. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Koshimizu, M.; Watanabe, K.; Sato, H.; Yagi, H.; Yanagitani, T. Positive hysteresis of Ce-doped GAGG scintillator. Opt. Mater. 2014, 36, 2016–2019. [Google Scholar] [CrossRef]
- Nagarkar, V.V.; Gupta, T.K.; Miller, S.R.; Klugerman, Y.; Squillante, M.R.; Entine, G. Structured CsI(Tl) scintillators for X-ray imaging applications. IEEE Trans. Nucl. Sci. 1998, 45, 492–496. [Google Scholar] [CrossRef]
- Moszyński, M.; Gresset, C.; Vacher, J.; Odru, R. Timing properties of BGO scintillator. Nucl. Instrum. Methods Phys. Res. 1981, 188, 403–409. [Google Scholar] [CrossRef]
- Moszyński, M.; Ludziejewski, T.; Wolski, D.; Klamra, W.; Norlin, L.O. Properties of the YAG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 1994, 345, 461–467. [Google Scholar] [CrossRef]
- Quarati, F.G.A.; Alekhin, M.S.; Krämer, K.W.; Dorenbos, P. Co-doping of CeBr3 scintillator detectors for energy resolution enhancement. Nucl. Instrum. Methods Phys. Res. Sect. A 2014, 735, 655–658. [Google Scholar] [CrossRef]
- Ichiba, K.; Takebuchi, Y.; Kimura, H.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Radiation-induced luminescence properties of Ce–doped Mg2SiO4 single crystals. J. Mater. Sci. Mater. Electron. 2021, 32, 25065–25073. [Google Scholar] [CrossRef]
- Moszyński, M.; Wolski, D.; Ludziejewski, T.; Kapusta, M.; Lempicki, A.; Brecher, C.; Wiśniewski, D.; Wojtowicz, A. Properties of the new LuAP:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 1997, 385, 123–131. [Google Scholar] [CrossRef]
- Ichiba, K.; Takebuchi, Y.; Kimura, H.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Photoluminescence, scintillation, and dosimetric properties of Tb-doped Mg2SiO4 single crystals. J. Mater. Sci. Mater. Electron. 2022, 33, 13634–13641. [Google Scholar] [CrossRef]
- Yanagida, T. Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. Ser. B 2018, 94, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, X.; Huang, K.; Sun, X.; Li, X.; Zeng, H.; Zhu, X.; Zhang, Y.; Xie, R. Lead-free bright yellow emissive Rb2AgCl3 scintillators with nanosecond radioluminescence. J. Lumin. 2022, 241, 118500. [Google Scholar] [CrossRef]
- Tseremoglou, S.; Michail, C.; Valais, I.; Ninos, K.; Bakas, A.; Kandarakis, I.; Fountos, G.; Kalyvas, N. Efficiency Properties of Cerium-Doped Lanthanum Chloride (LaCl3:Ce) Single Crystal Scintillator under Radiographic X-ray Excitation. Crystals 2022, 12, 655. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Almalki, S.; Kawaguchi, N.; Yanagida, T. Nanostructured scintillator developed in-house for radon detection. Radiat. Phys. Chem. 2022, 197, 110159. [Google Scholar] [CrossRef]
- Madden, L.; Archer, J.; Li, E.; Wilkinson, D.; Rosenfeld, A. Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs. Phys. Medica 2018, 54, 131–136. [Google Scholar] [CrossRef]
- Zhu, S.; Yung, B.C.; Chandra, S.; Niu, G.; Antaris, A.L.; Chen, X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018, 8, 4141–4151. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, F.; Chen, R.; Yan, D.; Zhu, X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J. Mater. Chem. B 2020, 8, 3772–3788. [Google Scholar] [CrossRef]
- You, J.; Zhang, R.; Zhang, G.; Zhong, M.; Liu, Y.; Van Pelt, C.S.; Liang, D.; Wei, W.; Sood, A.K.; Li, C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release 2012, 158, 319–328. [Google Scholar] [CrossRef]
- Gupta, B.P.; Thakur, N.; Jain, N.P.; Banweer, J.; Jain, S. Osmotically Controlled Drug Delivery System with Associated Drugs. J. Pharm. Pharm. Sci. 2010, 13, 571. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, K.; Fukushima, H.; Nakauchi, D.; Okada, G.; Onoda, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Investigation of Er:Bi4Ge3O12 single crystals emitting near-infrared luminescence for scintillation detectors. J. Alloys Compd. 2022, 903, 163834. [Google Scholar] [CrossRef]
- Akatsuka, M.; Kimura, H.; Onoda, D.; Shiratori, D.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. X-ray-induced Luminescence Properties of Nd-doped GdVO4. Sens. Mater. 2021, 33, 2243. [Google Scholar] [CrossRef]
- Akatsuka, M.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Optical and Scintillation Properties of YAlO3 Doped with Rare-Earths Emitting Near-infrared Photons. Sens. Mater. 2020, 32, 1373. [Google Scholar] [CrossRef]
- Akatsuka, M.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Characterization of Nd: LaVO4 single-crystal scintillator emitting near-infrared photons. Jpn. J. Appl. Phys. 2022, 61, SB1025. [Google Scholar] [CrossRef]
- Lima, A.F.; Souza, S.O.; Lalić, M.V. Electronic structure and optical absorption of the Bi4Ge3O12 and the Bi4Si3O12 scintillators in ultraviolet region: An ab initio study. J. Appl. Phys. 2009, 106, 013715. [Google Scholar] [CrossRef]
- Ishii, M.; Harada, K.; Hirose, Y.; Senguttuvan, N.; Kobayashi, M.; Yamaga, I.; Ueno, H.; Miwa, K.; Shiji, F.; Yiting, F.; et al. Development of BSO (Bi4Si3O12) crystal for radiation detector. Opt. Mater. 2002, 19, 201–212. [Google Scholar] [CrossRef]
- Dahal, D.; Ray, P.; Pan, D. Unlocking the power of optical imaging in the second biological window: Structuring near-infrared II materials from organic molecules to nanoparticles. WIREs Nanomed. Nanobiotechnology 2021, 13, e1734. [Google Scholar] [CrossRef]
- Tanaka, J.T.; Moscardini, S.B.; do Nascimento Melo, W.E.; Brunckova, H.; Nassar, E.J.; Rocha, L.A. NIR Luminescence Enhancement of YVO4:Nd Phosphor for Biological Application. J. Fluoresc. 2021, 31, 209–217. [Google Scholar] [CrossRef]
- Yanagida, T.; Kamada, K.; Fujimoto, Y.; Yagi, H.; Yanagitani, T. Comparative study of ceramic and single crystal Ce:GAGG scintillator. Opt. Mater. 2013, 35, 2480–2485. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Ito, T.; Uchiyama, K.; Mori, K. Development of X-ray-induced afterglow characterization system. Appl. Phys. Express 2014, 7, 062401. [Google Scholar] [CrossRef]
- Fukushima, H.; Akatsuka, M.; Kimura, H.; Onoda, D.; Shiratori, D.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Optical and Scintillation Properties of Nd-doped Strontium Yttrate Single Crystals. Sens. Mater. 2021, 33, 2235. [Google Scholar] [CrossRef]
- Chen, F.; Ju, M.; Kuang, X.; Yeung, Y. Insights into the Microstructure and Transition Mechanism for Nd3+-Doped Bi4Si3O12: A Promising Near-Infrared Laser Material. Inorg. Chem. 2018, 57, 4563–4570. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, X.; Hao, G.; Wang, L. Molten salt synthesis and luminescence properties of Bi4Si3O12 powders. J. Mater. Sci. Mater. Electron. 2013, 24, 814–818. [Google Scholar] [CrossRef]
- Okazaki, K.; Onoda, D.; Fukushima, H.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Characterization of scintillation properties of Nd-doped Bi4Ge3O12 single crystals with near-infrared luminescence. J. Mater. Sci. Mater. Electron. 2021, 32, 21677–21684. [Google Scholar] [CrossRef]
- Payziyev, S.; Sherniyozov, A.; Bakhramov, S.; Zikrillayev, K.; Khalikov, G.; Makhmudov, K.; Ismailov, M.; Payziyeva, D. Luminescence sensitization properties of Ce: Nd: YAG materials for solar pumped lasers. Opt. Commun. 2021, 499, 127283. [Google Scholar] [CrossRef]
- Kang, F.; Peng, M.; Zhang, Q.; Qiu, J. Abnormal Anti-Quenching and Controllable Multi-Transitions of Bi3+ Luminescence by Temperature in a Yellow-Emitting LuVO4: Bi3+ Phosphor for UV-Converted White LEDs. Chem.-A Eur. J. 2014, 20, 11522–11530. [Google Scholar] [CrossRef]
- Hreniak, D.; Fedyk, R.; Bednarkiewicz, A.; Stręk, W.; Łojkowski, W. Luminescence properties of Nd:YAG nanoceramics prepared by low temperature high pressure sintering method. Opt. Mater. 2007, 29, 1244–1251. [Google Scholar] [CrossRef]
- Zhu, X.; Xie, J.; Lin, D.; Guo, Z.; Xu, J.; Shi, Y.; Lei, F.; Wang, Y. Synthesis of BSO (Bi4Si3O12) scintillation thin film by sol–gel method. J. Alloys Compd. 2014, 582, 33–36. [Google Scholar] [CrossRef]
- Hua, J.; Kim, H.J.; Rooh, G.; Park, H.; Kim, S.; Cheon, J. Czochralski growth and scintillation properties of Bi4Si3O12 (BSO) single crystal. Nucl. Instrum. Methods Phys. Res. Sect. A 2011, 648, 73–76. [Google Scholar] [CrossRef]
- Santos, H.D.A.; Novais, S.M.V.; Jacinto, C. Optimizing the Nd:YF3 phosphor by impurities control in the synthesis procedure. J. Lumin. 2018, 201, 156–162. [Google Scholar] [CrossRef]
- Das, S.; Som, S.; Yang, C.; Lu, C.; Chen, Y.; Shy, H. Synthesis and characterization of high concentration Nd3+ doped YAG nanopowders for laser applications. In Proceedings of the 5th International Conference on Mechanical Engineering, Materials and Energy (5th ICMEME2016), Hong Kong, China, 10–11 December 2016; Atlantis Press: Paris, France, 2016. [Google Scholar]







Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichiba, K.; Okazaki, K.; Takebuchi, Y.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions. Materials 2022, 15, 8784. https://doi.org/10.3390/ma15248784
Ichiba K, Okazaki K, Takebuchi Y, Kato T, Nakauchi D, Kawaguchi N, Yanagida T. X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions. Materials. 2022; 15(24):8784. https://doi.org/10.3390/ma15248784
Chicago/Turabian StyleIchiba, Kensei, Kai Okazaki, Yuma Takebuchi, Takumi Kato, Daisuke Nakauchi, Noriaki Kawaguchi, and Takayuki Yanagida. 2022. "X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions" Materials 15, no. 24: 8784. https://doi.org/10.3390/ma15248784
APA StyleIchiba, K., Okazaki, K., Takebuchi, Y., Kato, T., Nakauchi, D., Kawaguchi, N., & Yanagida, T. (2022). X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions. Materials, 15(24), 8784. https://doi.org/10.3390/ma15248784

