Novel Synthesis, Characterization and Amoxicillin Release Study of pH-Sensitive Nanosilica/Poly(acrylic acid) Macroporous Hydrogel with High Swelling
Abstract
:1. Introduction
2. Research Significance
3. Experimental Section
3.1. Materials
3.2. Seeded Emulsion Polymerization of AA and SiO2 Nanoparticles
3.3. Prepration of Core-Shell Nanoparticles
3.4. Dynamic Swelling Studies
3.5. Measurement of Water Retention
3.6. Loading of Amoxicillin into the Macroporous Nanocomposite Hydrogels
3.7. In Vitro Drug Release
3.8. Instrumentations
4. Results and Discussion
4.1. Effect of Silica Nanoparticles on Formation of the Gel Structure
4.2. SiO2/PAA Nanocomposite Nanoparticles with Core/Shell Morphology
4.3. Characterization of SiO2/PAA Nanocomposite Nanoparticles by FTIR Spectra
4.4. Creation of Macro Pores in the Hydrogel Structure and Microstructure Morphology of the SiO2/PAA Macroporous Hydrogels
4.5. pH-Sensitive Swelling Behaviors of SiO2/PAA Nanocomposite Hydrogels
4.6. Water Retention of the Macropouros Nanocomposite Hydrogels
4.7. Amoxicillin Release Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, S.A.; Shah, L.A.; Shah, M.; Jamil, I. Engineering of 3D polymer network hydrogels for biomedical applications: A review. Polym. Bull. 2021, 78, 1–21. [Google Scholar] [CrossRef]
- Onaciu, A.; Munteanu, R.A.; Moldovan, A.I.; Moldovan, C.S.; Berindan-Neagoe, I. Hydrogels Based Drug Delivery Synthesis, Characterization and Administration. Pharmaceutics 2019, 23, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feksa, L.R.; Troian, E.A.; Muller, C.D.; Viegas, F.; Machado, A.B.; Rech, V.C. Hydrogels for biomedical applications. Nanostruct. Eng. Cells Tissues Organs 2018, 11, 403–438. [Google Scholar] [CrossRef]
- Razavi, B.; Abdollahi, A.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of phototropism, responsiveness, and smart drug delivery. Mater. Sci. Eng. C 2019, 109, 110524. [Google Scholar] [CrossRef]
- Hu, X.; Wei, W.; Qi, X.; Yu, H.; Feng, L.; Li, J.; Wang, S.; Zhang, J.; Dong, W. Preparation and characterization of a novel pH-sensitive Salecan-g-poly(acrylic acid) hydrogel for controlled release of doxorubicin. J. Mater. Chem. B 2015, 3, 2685–2697. [Google Scholar] [CrossRef]
- Kang, X.J.; Dai, Y.L.; Ma, P.A.; Yang, D.M.; Li, C.X.; Hou, Z.Y.; Cheng, Z.Y.; Lin, J. Poly(acrylic acid)-modified Fe3O4 microspheres for magnetic targeted and pH-triggered anticancer drug delivery. Chem. Eur. J. 2012, 18, 15676–15682. [Google Scholar] [CrossRef]
- Horkay, F. Polyelectrolyte Gels: A Unique Class of Soft Materials. Gels 2021, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Skouri, R.; Schosseler, F.; Munch, J.P.; Candau, S.J. Swelling and elastic properties of polyelectrolyte gels. Macromolecules 1995, 28, 197–210. [Google Scholar] [CrossRef]
- Kwon, H.J.; Osada, Y.; Gong, J.P. Polyelectrolyte Gels-Fundamentals and Applications. Polym. J. 2006, 38, 1211–1219. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Baik, J.; An, S.; Jeong, S.; Lee, J.; Lim, Y.; Park, J. Development and Characterization of Cross-Linked Poly(acrylic acid) Hydrogel Containing Drug by Radiation-Based Techniques. Preprints 2018, 2018010028. [Google Scholar] [CrossRef]
- Kazanskii, K.S.; Dubrovskii, S.A. Chemistry and Physics of “Agricultural” Hydrogels. Adv. Polym. Sci. 1992, 104, 97–133. [Google Scholar]
- Lumbreras-Aguayo, M.J.A.; Meléndez-Ortiz, H.I.; Puente-Urbina, B.; Alvarado-Canché, C.; Ledezma, A.; Romero-García, J.; Betancourt-Galindo, R. Poly(methacrylic acid)-modified medical cotton gauzes with antimicrobial and drug delivery properties for their use as wound dressings. Carbohydr. Polym. 2019, 205, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, S.K.; Chand, N.; Mahendra, M. In situ formation of silver nanoparticles in poly(methacrylic acid) hydrogel for antibacterial applications. Polym. Eng. Sci. 2013, 53, 1751–1759. [Google Scholar] [CrossRef]
- Angar, N.E.; Aliouche, D. Rheological behavior and reversible swelling of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels. Polym. Sci. Ser. A 2016, 58, 541–549. [Google Scholar] [CrossRef]
- Bajpai, S.K. Swelling–deswelling behavior of poly(acrylamide-co-maleic acid) hydrogels. J. Appl. Polym. Sci. 2001, 80, 2782–2789. [Google Scholar] [CrossRef]
- Mendoza-Payan, J.G.; Flores-Gallardo, S.; Marquez-Lucero, A. Preparation and electrical characterization of poly(vinyl amine) hydrogels, crosslinked with Cu (II) ions, and evaluation of their potentiality as water sensor material. J. Appl. Polym. Sci. 2010, 115, 790–801. [Google Scholar] [CrossRef]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef]
- Anuraag, B.; Bratlie, K.M. Collagen organization deposited by fibroblasts encapsulated in pH responsive methacrylated alginate hydrogels. J. Biomed. Mater. Res. Part A 2018, 106, 2934–2943. [Google Scholar]
- Didem, A.; Alemdar, N. Development of pH-responsive chitosan-based hydrogel modified with bone ash for controlled release of amoxicillin. Carbohydr. Polym. 2018, 184, 401–407. [Google Scholar]
- Crosby, A.J.; Lee, J.Y. Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polym. Rev. 2007, 47, 217–229. [Google Scholar] [CrossRef]
- Liu, Z.; Du, J.; Tan, Y.; Cao, L.; Xu, S.; Huang, J. Strengthening Network of Polyacrylic Acid/Silica Nanocomposite Hydrogels. Polym. Compos. 2018, 39, 3969–3976. [Google Scholar] [CrossRef]
- Guo, M.; Ming, J.; Stergios, P.; Wei, Y.; Zhou, C. Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and α-Cyclodextrin and their hybridization with SiO2 nanoparticles through host−guest interaction. Macromolecules 2008, 41, 9744–9749. [Google Scholar] [CrossRef]
- Lee, D.W.; Yoo, B.R. Advanced silica/polymer composites: Materials and applications. J. Ind. Eng. Chem. 2016, 38, 1–12. [Google Scholar] [CrossRef]
- Chowdhury, P.; Saha, S.K.; Guha, A.; Saha, S.K. Chemical and biochemical activities of sonochemically synthesized poly(N-isopropyl acrylamide)/silica nanocomposite. Appl. Surf. Sci. 2012, 261, 598–604. [Google Scholar] [CrossRef]
- Puggal, S.; Dhall, N.; Singh, N.; Litt, M.S. A Review on Polymer Nanocomposites: Synthesis, Characterization and Mechanical Properties. Indian J. Sci. Technol. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Liu, H.; Wang, T.; Wang, Q. In situ synthesis and properties of PMR PI/SiO2 nanocomposites. J. Appl. Polym. Sci. 2012, 125, 488–493. [Google Scholar] [CrossRef]
- Nadeem, M.; Ahmad, M.; Akhtar, M.S.; Shaari, A.; Riaz, S.; Naseem, S.; Saeed, M.A. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications. PLoS ONE 2016, 11, e0158084. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Malik, N.S.; Ahmad, M.; Minhas, U.M. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS ONE 2017, 12, e0172727. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Rodríguez-Félix, D.E.; Pérez-Martínez, C.J.; Castillo-Ortega, M.M.; Pérez-Tello JRomero-García, A.; Ledezma-Pérez, S.; del Castillo-Castro, T.; Rodríguez-Félix, F. pH- and temperature-sensitive semi-interpenetrating network hydrogels composed of poly(acrylamide) and poly(c-glutamic acid) as amoxicillin controlled-release system. Polym. Bull. 2012, 68, 197–207. [Google Scholar] [CrossRef]
- Ahmed, E.M. Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallahi, S.M.; Salami, K.M.; Dehghani, E.; Abbasi, F. Investigating Janus morphology development of poly(acrylic acid)/poly(2-(dimethylamino)ethyl methacrylate) composite particles: An experimental study and mathematical modeling of DOX release. Microchem. J. 2019, 145, 492–500. [Google Scholar] [CrossRef]
- Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today 2002, 7, 569–579. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, Y.; Liu, L.; Yao, J. Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste. Carbohydr. Polym. 2012, 87, 2519–2525. [Google Scholar] [CrossRef]
- Fallahi, S.M.; Salami, K.M.; Dehghani, E.; Abbasi, F. Investigation of different core-shell toward Janus morphologies by variation of surfactant and feeding composition: A study on the kinetics of DOX release. Colloids Surf. B Biointerfaces 2018, 170, 578–587. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorkhabi, T.S.; Samberan, M.F.; Ostrowski, K.A.; Majka, T.M. Novel Synthesis, Characterization and Amoxicillin Release Study of pH-Sensitive Nanosilica/Poly(acrylic acid) Macroporous Hydrogel with High Swelling. Materials 2022, 15, 469. https://doi.org/10.3390/ma15020469
Sorkhabi TS, Samberan MF, Ostrowski KA, Majka TM. Novel Synthesis, Characterization and Amoxicillin Release Study of pH-Sensitive Nanosilica/Poly(acrylic acid) Macroporous Hydrogel with High Swelling. Materials. 2022; 15(2):469. https://doi.org/10.3390/ma15020469
Chicago/Turabian StyleSorkhabi, Tannaz Soltanolzakerin, Mehrab Fallahi Samberan, Krzysztof Adam Ostrowski, and Tomasz M. Majka. 2022. "Novel Synthesis, Characterization and Amoxicillin Release Study of pH-Sensitive Nanosilica/Poly(acrylic acid) Macroporous Hydrogel with High Swelling" Materials 15, no. 2: 469. https://doi.org/10.3390/ma15020469
APA StyleSorkhabi, T. S., Samberan, M. F., Ostrowski, K. A., & Majka, T. M. (2022). Novel Synthesis, Characterization and Amoxicillin Release Study of pH-Sensitive Nanosilica/Poly(acrylic acid) Macroporous Hydrogel with High Swelling. Materials, 15(2), 469. https://doi.org/10.3390/ma15020469