Self-Healing Properties of Asphalt Concrete with Calcium Alginate Capsules Containing Different Healing Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Calcium Alginate Capsules
2.3. Characterization of the Capsules
2.4. Asphalt Specimen Preparation
2.5. Self-Healing Property Evaluation
2.6. SARA Fractions Analysis
2.7. Rheological Characterization of the Extracted Asphalts
3. Results and Discussion
3.1. Interior Structure of the Capsules
3.2. Mechanical Strength of the Capsules
3.3. Thermal Stability and Rejuvenator Content of the Capsules
3.4. Healing Properties of Differrnt Capsules under Different Cycles of Compression Loading
3.5. Healing Properties of Different Capsules under Cyclic Compression Loading of Different Stress Levels
3.6. Effect of Different Capsules on the SASA Fractions of Asphalt Binders Extracted from Asphalt Mixture Beams after Compressive Loading
3.7. Effect of Different Capsules on the Rehological Property of Asphalt Binder Extracted from Asphalt Mixture Beams after Compressive Loading
4. Conclusions
- The calcium alginate capsules containing vegetable oil, waste cooking oil and industrial rejuvenator presented obvious multi-cavity structure. The mechanical resistance and thermal stability of the three types of capsules all meet the requirement of mixing and compaction of asphalt mixtures in laboratory;
- The healing levels of asphalt mixtures with the three types of capsules all increased with the loading cycles and loading stress level. After 20,000 cycles of loading, the strength recovery ratios of test beams with vegetable oil capsules, waste cooking oil capsules and industrial rejuvenator capsules were 82.8%, 72.3% and 80.6%, respectively, which were notably higher than that of test beams without capsules (56.1%). Waste cooking oil can be used as the healing agent of calcium alginate capsules to improve the self-healing property of asphalt mixture;
- The contents of light components within asphalt binders extracted from asphalt mixtures containing different capsules all increased with the loading stress level. At the fixed loading pressure, the content of light components within asphalt binder containing vegetable oil capsules was higher than that of asphalt binder containing waste cooking oil and industrial rejuvenator capsules. After 10,000 cycles of loading at 1.4 MPa, the light components content of asphalt binder within asphalt mixtures containing vegetable oil capsules, waste cooking oil capsules and industrial rejuvenator capsules were 71.06%, 63.37% and 68.49%, respectively;
- The healing agents released from different capsules decreased the complex modulus and increase the phase angle of asphalt binder, thus improving the flow and self-healing ability of asphalt binder. After 10,000 cycles of loading at 1.4 MPa, the G*(46 °C) of asphalt binder within asphalt mixtures containing vegetable oil capsules, waste cooking oil capsules and industrial rejuvenator capsules were 17,808 Pa, 21,587 Pa and 19,356 Pa, respectively. The extracted asphalt binder within asphalt mixtures containing vegetable oil capsules had better flow ability than vegetable oil capsules and industrial rejuvenator.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, J.; Fu, Y.; Ma, T.; Zheng, B.; Zhang, Y.; Huang, X. Investigation on low-temperature cracking characteristics of asphalt mixtures: A virtual thermal stress restrained specimen test approach. Constr. Build. Mater. 2022, 347, 128541. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Tian, Z.; Lu, C. Exploration for UV Aging Characteristics of Asphalt Binders based on Response Surface Methodology: Insights from the UV Aging Influencing Factors and Their Interactions. Constr. Build. Mater. 2022, 347, 128460. [Google Scholar] [CrossRef]
- Zou, Y.; Amirkhanian, S.; Xu, S.; Li, Y.; Wang, Y.; Zhang, J. Effect of different aqueous solutions on physicochemical properties of asphalt binder. Constr. Build. Mater. 2021, 286, 122810. [Google Scholar] [CrossRef]
- Ogundipe, O.M.; Thom, N.; Collop, A. Investigation of crack resistance potential of stress absorbing membrane interlayers (SAMIs) under traffic loading. Constr. Build. Mater. 2013, 38, 658–666. [Google Scholar] [CrossRef]
- Khare, P.; Machesky, J.; Soto, R.; He, M.; Presto, A.A.; Gentner, D.R. Asphalt-related emissions are a major missing nontraditional source of secondary organic aerosol precursors. Sci. Adv. 2020, 6, eabb9785. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, N.; Yang, F.; Ren, Y.; Wu, S.; Wang, F.; Xie, J. Rheology and volatile organic compounds characteristics of warm-mix flame retardant asphalt. Constr. Build. Mater. 2021, 298, 123691. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Q.; Wang, F.; Cui, P.; Xie, J.; Li, J.; Wu, S.; Barbieri, D.M. Comparative Assessment of Asphalt Volatile Organic Com-pounds Emission from field to laboratory. J. Clean. Prod. 2021, 278, 123479. [Google Scholar] [CrossRef]
- Ma, F.; Dong, W.; Fu, Z.; Wang, R.; Huang, Y.; Liu, J. Life cycle assessment of greenhouse gas emissions from asphalt pavement maintenance: A case study in China. J. Clean. Prod. 2021, 288, 125595. [Google Scholar] [CrossRef]
- Wang, F.; Xie, J.; Wu, S.; Li, J.; Barbieri, D.M.; Zhang, L. Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies. Renew. Sustain. Energy Rev. 2021, 141, 110823. [Google Scholar] [CrossRef]
- Nergis, D.D.B.; Abdullah, M.M.A.B.; Vizureanu, P.; Tahir, M.F.M. Geopolymers and Their Uses: Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012019. [Google Scholar] [CrossRef]
- Qiu, J.; van de Ven, M.; Molenaar, A. Crack-healing investigation in bituminous materials. J. Mater. Civ. Eng. 2013, 25, 864–870. [Google Scholar] [CrossRef]
- García, Á. Self-healing of open cracks in asphalt mastic. Fuel 2012, 93, 264–272. [Google Scholar] [CrossRef]
- Shen, S.; Chiu, H.M.; Huang, H. Characterization of fatigue and healing in asphalt binders. J. Mater. Civ. Eng. 2010, 22, 846–852. [Google Scholar] [CrossRef]
- Sun, D.; Sun, G.; Zhu, X.; Guarin, A.; Li, B.; Dai, Z.; Ling, J. A comprehensive review on self-healing of asphalt materials: Mecha-nism, model, characterization and enhancement. Adv. Colloid Interface Sci. 2018, 256, 65–93. [Google Scholar] [CrossRef]
- Xu, S.; García, A.; Su, J.; Liu, Q.; Tabaković, A.; Schlangen, E. Self-healing asphalt review: From idea to practice. Adv. Mater. Interfaces 2018, 5, 1800536. [Google Scholar] [CrossRef]
- Gonzalez-Torre, I.; Norambuena-Contreras, J. Recent advances on self-healing of bituminous materials by the action of en-capsulated rejuvenators. Constr. Build. Mater. 2020, 258, 119568. [Google Scholar] [CrossRef]
- Li, Y.; Hao, P.; Zhang, M. Fabrication, characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials: A review. J. Clean. Prod. 2021, 287, 125079. [Google Scholar] [CrossRef]
- Bao, S.; Liu, Q.; Rao, W.; Yu, X.; Zhang, L. Synthesis and characterization of calcium alginate-attapulgite composite capsules for long term asphalt self-healing. Constr. Build. Mater. 2020, 265, 120779. [Google Scholar] [CrossRef]
- Aguirre, M.A.; Hassan, M.M.; Shirzad, S.; Daly, W.H.; Mohammad, L.N. Micro-encapsulation of asphalt rejuvenators using melamine-formaldehyde. Constr. Build. Mater. 2016, 114, 29–39. [Google Scholar] [CrossRef]
- Hwang, J.S.; Kim, J.-N.; Wee, Y.-J.; Yun, J.-S.; Jang, H.-G.; Kim, S.-H.; Ryu, H.-W. Preparation and characterization of melamine-formaldehyde resin microcapsules containing fragrant oil. Biotechnol. Bioprocess Eng. 2006, 11, 332–336. [Google Scholar] [CrossRef]
- Su, J.; Qiu, J.; Schlangen, E. Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polym. Degrad. Stab. 2013, 98, 1205–1215. [Google Scholar] [CrossRef]
- Su, J.; Schlangen, E. Synthesis and physicochemical properties of high compact microcapsules containing rejuvenator applied in asphalt. Chem. Eng. J. 2012, 198–199, 289–300. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Muhammad, Y.; Sahibzada, M.; Zhu, Z.; Liu, T.; Liao, S. Fabrication and application of polyurea formaldehyde-bioasphalt microcapsules as a secondary modifier for the preparation of high self-healing rate SBS modified asphalt. Constr. Build. Mater. 2020, 246, 118452. [Google Scholar] [CrossRef]
- Li, R.; Zhou, T.; Pei, J. Design, preparation and properties of microcapsules containing rejuvenator for asphalt. Constr. Build. Mater. 2015, 99, 143–149. [Google Scholar] [CrossRef]
- Li, B.; Sun, G.; Sun, D.; Lu, T.; Ma, J.; Deng, Y. Survival and activation behavior of microcapsules in self-healing asphalt mixture. Constr. Build. Mater. 2020, 260, 119719. [Google Scholar] [CrossRef]
- Sun, D.; Li, B.; Ye, F.; Zhu, X.; Lu, T.; Tian, Y. Fatigue behavior of microcapsule-induced self-healing asphalt concrete. J. Clean. Prod. 2018, 188, 466–476. [Google Scholar] [CrossRef]
- Wang, X.; Guo, G.; Zou, F.; Zhao, H.; Li, Y. Enhancing self-healing properties of microcrack on aged asphalt incorporating with microcapsules encapsulating rejuvenator. Constr. Build. Mater. 2022, 344, 128123. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, M.; Li, P.; Zhang, J.; Qiao, R.; Cheng, C.; Xu, H. Preparation and characterization of self-healing microcapsules of asphalt. Constr. Build. Mater. 2020, 263, 120174. [Google Scholar] [CrossRef]
- Li, Y.; Hao, P.; Zhang, M.; Sun, B.; Liu, J.; Li, N. Synthesis and characterization of calcium alginate capsules encapsulating soybean oil for in situ rejuvenation of aged asphalt. J. Mater. Civ. Eng. 2021, 33, 04021310. [Google Scholar] [CrossRef]
- Yamaç, Ö.E.; Yilmaz, M.; Yalçın, E.; Kök, B.V.; Norambuena-Contreras, J.; Garcia, A. Self-healing of asphalt mastic using capsules containing waste oils. Constr. Build. Mater. 2021, 270, 121417. [Google Scholar] [CrossRef]
- Wan, P.; Wu, S.; Liu, Q.; Xu, H.; Wang, H.; Peng, Z.; Rao, W.; Zou, Y.; Zhao, Z.; Chen, S. Self-healing properties of asphalt concrete containing responsive calcium alginate/nano-Fe3O4 composite capsules via microwave irradiation. Constr. Build. Mater. 2021, 310, 125258. [Google Scholar] [CrossRef]
- Ruiz-Riancho, N.; Garcia, A.; Grossegger, D.; Saadoon, T.; Hudson-Griffiths, R. Properties of Ca-alginate capsules to maximise asphalt self-healing properties. Constr. Build. Mater. 2021, 284, 122728. [Google Scholar] [CrossRef]
- Bao, S.; Liu, Q.; Li, H.; Zhang, L.; Barbieri, D.M. Investigation of the release and self-healing properties of calcium alginate capsules in asphalt concrete under cyclic compression loading. J. Mater. Civ. Eng. 2021, 33, 04020401. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Li, H.; Norambuena-Contreras, J.; Wu, S.; Bao, S.; Shu, B. Synthesis and characterization of multi-cavity Ca-alginate capsules used for self-healing in asphalt mixtures. Constr. Build. Mater. 2019, 211, 298–307. [Google Scholar] [CrossRef]
- Wan, P.; Liu, Q.; Wu, S.; Zhao, Z.; Chen, S.; Zou, Y.; Rao, W.; Yu, X. A novel microwave induced oil release pattern of calcium alginate/nano-Fe3O4 composite capsules for asphalt self-healing. J. Clean. Prod. 2021, 297, 126721. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Liu, Q.; Zhang, L.; Wu, S.; Yalcin, E.; Garcia, A. Influence of encapsulated sunflower oil on the mechanical and self-healing properties of dense-graded asphalt mixtures. Mater. Struct. 2019, 52, 78. [Google Scholar] [CrossRef]
- JTG F40-2004; Technical Specifications for Construction of Highway Asphalt Pavements. Ministry of Transportation Highway Research Institute: Beijing, China, 2004.
- Norambuena-Contreras, J.; Yalcin, E.; Hudson-Griffiths, R.; García, A. Mechanical and self-healing properties of stone mastic asphalt containing encapsulated rejuvenators. J. Mater. Civ. Eng. 2019, 31, 04019052. [Google Scholar] [CrossRef]
Healing Agents | Density (g·cm−3 (15 °C)) | Viscosity (Pa·s (60 °C)) | Flash Point (°C) | Saturates (%) | Aromatics (%) |
---|---|---|---|---|---|
Vegetable oil | 0.935 | 0.28 | 320 | 61.9 | 38.1 |
Waste cooking oil | 0.989 | 0.32 | 216 | 4.3 | 65.1 |
Industrial rejuvenator | 0.980 | 0.43 | 220 | 6.0 | 75.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yuan, M.; Wu, J.; Wan, P.; Liu, Q. Self-Healing Properties of Asphalt Concrete with Calcium Alginate Capsules Containing Different Healing Agents. Materials 2022, 15, 5555. https://doi.org/10.3390/ma15165555
Wang H, Yuan M, Wu J, Wan P, Liu Q. Self-Healing Properties of Asphalt Concrete with Calcium Alginate Capsules Containing Different Healing Agents. Materials. 2022; 15(16):5555. https://doi.org/10.3390/ma15165555
Chicago/Turabian StyleWang, Huoming, Miao Yuan, Jie Wu, Pei Wan, and Quantao Liu. 2022. "Self-Healing Properties of Asphalt Concrete with Calcium Alginate Capsules Containing Different Healing Agents" Materials 15, no. 16: 5555. https://doi.org/10.3390/ma15165555