Do Microplastics Enter Our Food Chain Via Root Vegetables? A Raman Based Spectroscopic Study on Raphanus sativus
Abstract
:1. Introduction
2. Materials and Methods
2.1. FE-SEM Characterization of ABS MPs Powder
2.2. Experimental Methodology and Plant Material Preparation
2.3. Measurement Instrumentation and Settings
3. Results
3.1. Phenotypic Observations
3.2. Detection of MPs in Radish Root Sections
3.3. Observations of MPs Spectroscopic Alterations in Later Developmental Stages
3.4. Sequential Confocal Localization of an Identified MP within the Root Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kontrick, A.V. Microplastics and human health: Our great future to think about now. J. Med. Toxicol. 2018, 14, 117–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Verla, A.W.; Verla, E.N.; Ibe, F.C.; Amaobi, C.E. Airborne microplastics: A review study on method for analysis, occurrence, movement and risks. Environ. Monit. Assess. 2019, 191, 668. [Google Scholar] [CrossRef]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Z.; Zhou, Q.; Yin, N.; Tu, C.; Luo, Y.M. Uptake and accumulation of microplastics in an edible plant. Chin. Sci. B-Chin. 2019, 64, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Luo, Y.; Peijnenburg, W.J.G.M.; Li, R.; Yang, J.; Zhou, Q. Confocal measurement of microplastics uptake by plants. MethodsX 2020, 7, 100750. [Google Scholar] [CrossRef]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef]
- Qi, Y.; Ossowicki, A.; Yang, X.; Huerta Lwanga, E.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Huerta Lwanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Taylor, S.E.; Pearce, C.I.; Sanguinet, K.A.; Hu, D.; Chrisler, W.B.; Kim, Y.-M.; Wang, Z.; Flury, M. Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots. Environ. Sci. Nano 2020, 7, 1942–1953. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, X.; Fan, Y.; Wu, Q. Cumulative effects of powders of degraded PE mulching-films on chemical properties of soil. Environ. Sci. Technol. (China) 2015, 38, 115–119. [Google Scholar]
- Li, L.; Luo, Y.; Li, R.; Zhou, Q.; Peijnenburg, W.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar] [CrossRef]
- Keshavarz, M.; Chowdhury, A.K.M.R.H.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality. Sens. Actuators B-Chem. 2020, 323, 128703. [Google Scholar] [CrossRef]
- Keshavarz, M.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 2020, 5, 294–307. [Google Scholar] [CrossRef]
- Papadakis, V.M.; Kenanakis, G. Reusable surface-enhanced Raman substrates using microwave annealing. Appl. Phys. A-Mater. 2018, 124, 1–9. [Google Scholar] [CrossRef]
- Bikulcius, G.; Ignatjev, I.; Rucinskiene, A. Rapid method to determine suitability of ABS plastics for metallisation. Trans. IMF 2014, 92, 47–51. [Google Scholar] [CrossRef]
- Szymanska-Chargot, M.; Cybulska, J.; Zdunek, A. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors (Basel) 2011, 11, 5543–5560. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, S.; Ramaswamy, S.; Kim, Y.S.; Xu, F. Obtaining pure spectra of hemicellulose and cellulose from poplar cell wall Raman imaging data. Cellulose 2017, 24, 4671–4682. [Google Scholar]
- Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2015, 50, 46–111. [Google Scholar] [CrossRef]
- De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Deng, W.; Long, M.; Zhou, Q.; Wen, N.; Deng, W. One-step preparation of superhydrophobic acrylonitrile-butadiene-styrene copolymer coating for ultrafast separation of water-in-oil emulsions. J. Colloid Interface Sci. 2018, 511, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Sharon Olivera, H.B.M. Krishna venkatesh keshavanarayana gopalakrishna & chinnaganahalli suryaprakash vivek plating on acrylonitrile–butadiene–styrene (ABS) plastic: A review. J. Mater. Sci. 2016, 51, 3657–3674. [Google Scholar]
- Van Ngo, H.; Nguyen, P.K.; Van Vo, T.; Duan, W.; Tran, V.T.; Tran, P.H.; Tran, T.T. Hydrophilic-hydrophobic polymer blend for modulation of crystalline changes and molecular interactions in solid dispersion. Int. J. Pharm. 2016, 513, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Lavieja, C.; Oriol, L.; Pena, J.I. Creation of superhydrophobic and superhydrophilic surfaces on ABS employing a nanosecond laser. Materials (Basel) 2018, 11, 2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.; Shioi, Y. Changes in chlorophyll and carotenoid contents in radish (Raphanus sativus) cotyledons show different time courses during senescence. Physiol. Plant. 2004, 122, 291–296. [Google Scholar] [CrossRef]
- Webb, J.S.; Nixon, M.; Eastwood, I.M.; Greenhalgh, M.; Robson, G.D.; Handley, P.S. Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl. Environ. Microbiol. 2000, 66, 3194–3200. [Google Scholar] [CrossRef] [Green Version]
Variability of Cotyledon Size | Plant Group | |||
---|---|---|---|---|
Width (Pixels) | G2-1 | G2-1 | G1-1 | G1-2 |
1 | 129.560 | 113.799 | 197.428 | 60.828 |
2 | 120.340 | 98.984 | 63.334 | 36.962 |
3 | 97.798 | 109.863 | 14.981 | 95.789 |
4 | 101.546 | 104.546 | 15.114 | 85.255 |
5 | 83.613 | 108.912 | 83.205 | 21.427 |
6 | 77.517 | 101.544 | 71.653 | 19.067 |
Raman Peaks (cm−1) of ABS | Raman Peaks (cm−1) of Root1 mp | Raman Peaks (cm−1) of Root2 mp | Raman Peaks (cm−1) of Root3 mp | Assignments Referred to ABS [16] |
---|---|---|---|---|
623 | 619 | 620 | 619 | 621 cm−1 → d (ring) of benzene |
1003 | 1000 | 1000 | 1000 | 1002 cm−1 → Benzene ring breathing |
1033 | 1029 | 1032 | 1030 | 1032 cm−1 → δ (C–H) in plane of Benzene |
1605 | 1602 | 1601 | 1602 | 1603 cm−1 → vs(C–C) of benzene ring |
2239 | 2237 | 2238 | 2236, 2239 | 2239 cm−1 → v (C≡N) |
3057 | 3055, 3059 | 3058 | 3058, 3060 | 3060 cm−1 → v (=C–H) of benzene ring |
Raman Peaks (cm−1) of ABS | Raman Peaks (cm−1) of Root4 mp | Raman Peaks (cm−1) of Root5 mp | Raman Peaks (cm−1) of Root6 mp | Assignments Referred to ABS [16] |
---|---|---|---|---|
623 | 619 | 620 | 616 | 621 cm−1 → d (ring) of benzene |
1003 | 999 | 1001 | 997 | 1002 cm−1 → Benzene ring breathing |
1033 | 1030 | 1031 | 1027 | 1032 cm−1 → δ (C–H) in plane of Benzene |
1605 | 1601 | 1602 | 1599 | 1603 cm−1 → vs(C–C) of benzene ring |
2239 | 2234 | 2237 | 2236 | 2239 cm−1 → v (C≡N) |
3057 | 3057 | 3055, 3060 | 3051, 3055, 3060 | 3060 cm−1 → v (=C–H) of benzene ring |
ABS | Root1 mp | Root2 mp | Root3 mp | Root4 mp | Root5 mp | Root6 mp | Assignments |
---|---|---|---|---|---|---|---|
1157 | 1155 | 1150 | 1153 | 1151, 1155 | 1151 | 1150 strong | 1156-1157 cm−1 → δ(C–H) out-of-plane of benzene ring in ABS [16] 1157 strong cm−1 → CC, CO stretching asymmetric, (crystalline) in cellulose [17] 1151 cm−1 → shoulder in cellulose [18] 1150 cm−1 → Glycogen, Carotenoid [19] 1152 cm−1 → ν(C–N), proteins (protein assignment), ν(C–C) carotenoids, Carotenoid peaks due to C–C and conjugated C=C band stretch [19] 1153 cm−1 → Carbohydrates peak for solutions [19] 1154 cm−1 → -Carotenes [19] 1155-1157 cm−1 → Carotenoids [19] 1155 cm−1 → C–C (and C–N) stretching of proteins (also carotenoids), Glycogen, ν (C–C)- Diagnostic for the presence of a carotenoid structure, most likely a cellular pigment [19] 1156 cm−1 → C–C, C–N stretching (protein) [19] 1157 cm−1 → In-plane vibrations of the conjugated =C–C=, β-carotene accumulation (C=C stretch mode) [19] |
- | - | - | - | 1508 (weak) | - | 1505 (strong) | 1506 cm−1 → N–H bending [19] 1506 and 1508 cm−1 → Cytosine [19] 1508 cm−1 → Acetyl coenzyme A [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tympa, L.-E.; Katsara, K.; Moschou, P.N.; Kenanakis, G.; Papadakis, V.M. Do Microplastics Enter Our Food Chain Via Root Vegetables? A Raman Based Spectroscopic Study on Raphanus sativus. Materials 2021, 14, 2329. https://doi.org/10.3390/ma14092329
Tympa L-E, Katsara K, Moschou PN, Kenanakis G, Papadakis VM. Do Microplastics Enter Our Food Chain Via Root Vegetables? A Raman Based Spectroscopic Study on Raphanus sativus. Materials. 2021; 14(9):2329. https://doi.org/10.3390/ma14092329
Chicago/Turabian StyleTympa, Leda-Eleni, Klytaimnistra Katsara, Panagiotis N. Moschou, George Kenanakis, and Vassilis M. Papadakis. 2021. "Do Microplastics Enter Our Food Chain Via Root Vegetables? A Raman Based Spectroscopic Study on Raphanus sativus" Materials 14, no. 9: 2329. https://doi.org/10.3390/ma14092329
APA StyleTympa, L. -E., Katsara, K., Moschou, P. N., Kenanakis, G., & Papadakis, V. M. (2021). Do Microplastics Enter Our Food Chain Via Root Vegetables? A Raman Based Spectroscopic Study on Raphanus sativus. Materials, 14(9), 2329. https://doi.org/10.3390/ma14092329