Next Article in Journal
Microstructures and Macrosegregation of Al–Zn–Mg–Cu Alloy Billet Prepared by Uniform Direct Chill Casting
Next Article in Special Issue
Local Induction Heating Capabilities of Zeolites Charged with Metal and Oxide MNPs for Application in HDPE Hydrocracking: A Proof of Concept
Previous Article in Journal
The Effect of Stretching on the Crystal Structure and Crystal Orientation of PA510/SiO2 Films
Previous Article in Special Issue
Induction Heating in Nanoparticle Impregnated Zeolite
Article Menu

Article Menu


Whither Magnetic Hyperthermia? A Tentative Roadmap

IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain
Geophysical Centre of the Royal Meteorological Institute, 1 rue du Centre Physique, 5670 Dourbes, Belgium
Soós Water Technology Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary
RISE Research Institutes of Sweden, Sensors and Materials, Arvid Hedvalls Backe 4, 411 33 Göteborg, Sweden
Instituto de Magnetismo Aplicado UCM-ADIF-CSIC, A6 22,500 km, 29260 Las Rozas, Spain
Departamento de Física de Materiales, Universidad Complutense de Madrid, Avda. Complutense s/n, 28048 Madrid, Spain
Nanotech Solutions, Ctra Madrid, 23, 40150 Villacastín, Spain
Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
Biophysics Group, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France
Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK
Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium
INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Chemistry Department, Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
Magnetic Insight, Alameda, CA 94501, USA
Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), 11002 Cádiz, Spain
Condensed Matter Physics Department, Faculty of Sciences, Campus Universitario de Puerto Real s/n, 11510 Puerto Real, Spain
Author to whom correspondence should be addressed.
Academic Editor: Vadim Kessler
Materials 2021, 14(4), 706;
Received: 2 December 2020 / Revised: 20 January 2021 / Accepted: 25 January 2021 / Published: 3 February 2021
(This article belongs to the Special Issue Magnetic Nanoparticles as High-Frequency Nano-Heaters)
The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia. View Full-Text
Keywords: magnetic hyperthermia; magnetic nanoparticles; hysteresis losses; cancer; magnetic particle imaging; theranostics; nanoparticles synthesis; thermometry; standardization; nanotoxicity magnetic hyperthermia; magnetic nanoparticles; hysteresis losses; cancer; magnetic particle imaging; theranostics; nanoparticles synthesis; thermometry; standardization; nanotoxicity
Show Figures

Figure 1

MDPI and ACS Style

Rubia-Rodríguez, I.; Santana-Otero, A.; Spassov, S.; Tombácz, E.; Johansson, C.; De La Presa, P.; Teran, F.J.; Morales, M.d.P.; Veintemillas-Verdaguer, S.; Thanh, N.T.K.; Besenhard, M.O.; Wilhelm, C.; Gazeau, F.; Harmer, Q.; Mayes, E.; Manshian, B.B.; Soenen, S.J.; Gu, Y.; Millán, Á.; Efthimiadou, E.K.; Gaudet, J.; Goodwill, P.; Mansfield, J.; Steinhoff, U.; Wells, J.; Wiekhorst, F.; Ortega, D. Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials 2021, 14, 706.

AMA Style

Rubia-Rodríguez I, Santana-Otero A, Spassov S, Tombácz E, Johansson C, De La Presa P, Teran FJ, Morales MdP, Veintemillas-Verdaguer S, Thanh NTK, Besenhard MO, Wilhelm C, Gazeau F, Harmer Q, Mayes E, Manshian BB, Soenen SJ, Gu Y, Millán Á, Efthimiadou EK, Gaudet J, Goodwill P, Mansfield J, Steinhoff U, Wells J, Wiekhorst F, Ortega D. Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials. 2021; 14(4):706.

Chicago/Turabian Style

Rubia-Rodríguez, Irene, Antonio Santana-Otero, Simo Spassov, Etelka Tombácz, Christer Johansson, Patricia De La Presa, Francisco J. Teran, María d.P. Morales, Sabino Veintemillas-Verdaguer, Nguyen T.K. Thanh, Maximilian O. Besenhard, Claire Wilhelm, Florence Gazeau, Quentin Harmer, Eric Mayes, Bella B. Manshian, Stefaan J. Soenen, Yuanyu Gu, Ángel Millán, Eleni K. Efthimiadou, Jeff Gaudet, Patrick Goodwill, James Mansfield, Uwe Steinhoff, James Wells, Frank Wiekhorst, and Daniel Ortega. 2021. "Whither Magnetic Hyperthermia? A Tentative Roadmap" Materials 14, no. 4: 706.

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop