Band Gap of Pb(Fe0.5Nb0.5)O3 Thin Films Prepared by Pulsed Laser Deposition
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y.M.; et al. High-performance transition metal–doped Pt 3 Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelmetti, I.; Cabau, L.; Montcada, N.F.; Palomares, E. Selective Organic Contacts for Methyl Ammonium Lead Iodide (MAPI) Perovskite Solar Cells: Influence of Layer Thickness on Carriers Extraction and Carriers Lifetime. ACS Appl. Mater. Interfaces 2017, 9, 21599–21605. [Google Scholar] [CrossRef] [PubMed]
- Gordillo, G.; Torres, O.G.; Abella, M.C.; Peña, J.C.; Virguez, O. Improving the stability of MAPbI3 films by using a new synthesis route. J. Mater. Res. Technol. 2020, 9, 13759–13769. [Google Scholar] [CrossRef]
- Fridkin, V.M. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep. 2001, 46, 654–658. [Google Scholar] [CrossRef]
- Ashkin, A.; Boyd, G.D.; Dziedzic, J.M.; Smith, R.G.; Ballman, A.A.; Levinstein, J.J.; Nassau, K. Optically-induced refractive index inhomogenities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 1966, 9, 72–74. [Google Scholar] [CrossRef]
- Qin, M.; Yao, K.; Liang, Y.C. High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl. Phys. Lett. 2008, 93, 122904. [Google Scholar] [CrossRef]
- Ichiki, M.; Maeda, R.; Morikawa, Y.; Mabune, Y.; Nakada, T.; Nonaka, K. Photovoltaic effect of lead lanthanum zirconate titanate in a layered film structure design. Appl. Phys. Lett. 2004, 84, 395–397. [Google Scholar] [CrossRef]
- Brody, P. Large polarization-dependent photovoltages in ceramic BaTiO3 + 5 wt.% CaTiO3. Solid State Commun. 1973, 12, 673–676. [Google Scholar] [CrossRef]
- Berenov, A.; Petrov, P.; Moffat, B.; Phair, J.; Allers, L.; Whatmore, R.W. Pyroelectric and photovoltaic properties of Nb-doped PZT thin films. APL Mater. 2021, 9, 041108. [Google Scholar] [CrossRef]
- Chen, B.; Zuo, Z.; Liu, Y.; Zhan, Q.-F.; Xie, Y.; Yang, H.; Dai, G.; Li, Z.; Xu, G.; Li, R.-W. Tunable photovoltaic effects in transparent Pb(Zr0.53,Ti0.47)O3 capacitors. Appl. Phys. Lett. 2012, 100, 173903. [Google Scholar] [CrossRef] [Green Version]
- Thakoor, S.; Maserjian, J. Photoresponse probe of the space charge distribution in ferroelectric lead zirconate titanate thin film memory capacitors. J. Vac. Sci. Technol. A 1994, 12, 295–299. [Google Scholar] [CrossRef]
- Yang, Y.S.; Kim, J.P.; Lee, S.H.; Joo, H.J.; Jang, M.S. Space charge effects in the photocurrent spectrum of ferroelectric Pb(Zr,Ti)O3 thin films. J. Korean Phys. Soc. 1999, 35, 1168–1171. [Google Scholar]
- Zheng, F.; Xin, Y.; Huang, W.; Zhang, J.; Wang, X.; Shen, M.; Dong, W.; Fang, L.; Bai, Y.; Shen, X.; et al. Above 1% efficiency of a ferroelectric solar cell based on the Pb(Zr,Ti)O3 film. J. Mater. Chem. A 2014, 2, 1363–1368. [Google Scholar] [CrossRef]
- Li, H.; Zhu, J.; Wu, Q.; Zhuang, J.; Guo, H.; Ma, Z.; Ye, Y. Enhanced photovoltaic properties of PbTiO3-based ferroelectric thin films prepared by a sol-gel process. Ceram. Int. 2017, 43, 13063–13068. [Google Scholar] [CrossRef]
- Warren, W.L.; Tuttle, B.A.; McWhorter, P.J.; Rong, F.C.; Poindexter, E.H. Identification of paramagnetic Pb+3 defects in lead zirconate titanate ceramics. Appl. Phys. Lett. 1993, 62, 482–484. [Google Scholar] [CrossRef]
- Bennett, J.W.; Grinberg, I.; Rappe, A.M. New Highly Polar Semiconductor Ferroelectrics throughd8Cation-O Vacancy Substitution into PbTiO3: A Theoretical Study. J. Am. Chem. Soc. 2008, 130, 17409–17412. [Google Scholar] [CrossRef]
- Oanh, L.M.; Do, D.B.; Phu, N.D.; Mai, N.T.P.; Van Minh, N. Influence of Mn Doping on the Structure, Optical, and Magnetic Properties of PbTiO3 Material. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Bao, D.; Yao, X.; Shinozaki, K.; Mizutani, N. Crystallization and optical properties of sol–gel-derived PbTiO3 thin films. J. Phys. D. 2003, 36, 2141–2145. [Google Scholar] [CrossRef]
- Seager, C.H.; Land, C.E. Optical absorption in ion-implanted lead lanthanum zirconate titanate ceramics. Appl. Phys. Lett. 1984, 45, 395. [Google Scholar] [CrossRef]
- Panda, B.; Ray, S.K.; Dhar, A.; Sarkar, A.; Bhattacharya, D.; Chopra, K.L. Electron beam deposited lead-lanthanum-zirconate-titanate thin films for silicon based device applications. J. Appl. Phys. 1996, 79, 1008. [Google Scholar] [CrossRef]
- Paik, Y.H.; Kojori, H.S.; Yun, J.-H.; Kim, S.J. Improved efficiency of ferroelectric Pb(Zr, Ti)O3 (PZT) based photovoltaic device with colloidal quantum dots. Mater. Lett. 2016, 185, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Martin, L.W.; Byrnes, S.; Conry, T.; Basu, S.R.; Paran, D.; Reichertz, L.A.; Ihlefeld, J.F.; Adamo, C.; Melville, A.; et al. Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 2009, 95, 062909. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.R.; Martin, L.W.; Chu, Y.H.; Gajek, M.; Ramesh, R.; Rai, R.C.; Xu, X.; Musfeldt, J.L. Photoconductivity in BiFeO3 thin films. Appl. Phys. Lett. 2008, 92, 091905. [Google Scholar] [CrossRef] [Green Version]
- Bochenek, D.; Guzdek, P. Ferroelectric and magnetic properties of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 type ceramics. J. Magn. Magn. Mater. 2011, 323, 369–374. [Google Scholar] [CrossRef]
- Gao, X.S.; Chen, X.Y.; Yin, J.; Wu, J.; Liu, Z.G.; Wang, M. Ferroelectric and dielectric properties of ferroelectromagnet Pb(Fe1/2Nb1/2)O3 ceramics and thin films. J. Mater. Sci. 2000, 35, 5421–5425. [Google Scholar] [CrossRef]
- Kleemann, W.; Shvartsman, V.; Borisov, P.; Kania, A. Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys. Rev. Lett. 2010, 105, 257202. [Google Scholar] [CrossRef]
- Bartek, N.; Shvartsman, V.V.; Salamon, S.; Wende, H.; Lupascu, D.C. Influence of calcination and sintering temperatures on dielectric and magnetic properties of Pb(Fe0.5Nb0.5)O3 ceramics synthesized by the solid state method. Ceram. Int. 2021, 47, 23396–23403. [Google Scholar] [CrossRef]
- Lampis, N.; Sciau, P.; Lehmann, A.G. Rietveld refinements of the paraelectric and ferroelectric structures of PbFe0.5Nb0.5O3. J. Phys. Condens. Matter 1999, 11, 3489–3500. [Google Scholar] [CrossRef]
- Bokov, V.A.; Myl’nikova, I.E.; Smolenskii, G.A. Ferroelectrics antiferromagnetics. J. Exptl. Theoret. Phys. 1962, 42, 643–646. [Google Scholar]
- Bartek, N.; Shvartsman, V.; Lupascu, D.C.; Prah, U.; Ursic, H. Influence of synthesis route on the properties of lead iron niobate. In Proceedings of the 2019 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Lausanne, Switzerland, 14–19 July 2019; Volume 2019, pp. 1–4. [Google Scholar]
- Bharti, C.; Dutta, A.; Shannigrahi, S.; Choudhary, S.; Thapa, R.; Sinha, T. Impedance spectroscopy, electronic structure and X-ray photoelectron spectroscopy studies of Pb(Fe1/2Nb1/2)O3. J. Electron Spectrosc. Relat. Phenom. 2009, 169, 80–85. [Google Scholar] [CrossRef]
- Tao, S.; Schmidt, I.; Brocks, G.; Jiang, J.; Tranca, I.; Meerholz, K.; Olthof, S. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, J.; Viehland, D. Deposition conditions and electrical properties of relaxor ferroelectric Pb(Fe1/2Nb1/2)O3 thin films prepared by pulsed laser deposition. J. Appl. Phys. 2007, 101, 104107. [Google Scholar] [CrossRef] [Green Version]
- Birkholz, M. Thin Film Analysis by X-ray Scattering; Wiley: Weinheim, Germany, 2006; pp. 168–171. [Google Scholar]
- Kiessig, H. Interferenz von Röntgenstrahlen an dünnen Schichten. Ann. Phys. 1931, 10, 769–788. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Bredas, J.-L. Mind the gap! Mater. Horiz. 2014, 1, 17–19. [Google Scholar] [CrossRef]
- Chen, G.; Zou, K.; Yu, Y.; Zhang, Y.; Zhang, Q.; Lu, Y.; He, Y. Effects of the film thickness and poling electric field on photovoltaic performances of (Pb,La)(Zr,Ti)O3 ferroelectric thin film-based devices. Ceram. Int. 2020, 46, 4148–4153. [Google Scholar] [CrossRef]
- He, J.; Li, F.; Chen, X.; Qian, S.; Geng, W.; Bi, K.; Mu, J.; Hou, X.; Chou, X. Thickness Dependence of Ferroelectric and Optical Properties in Pb(Zr0.53Ti0.47)O3 Thin Films. Sensors 2019, 19, 4073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.Y.; Ding, A.L.; Zhang, Y.; Cao, Z.P.; Qiu, P.S. Influence of Film Thickness on Optical Properties of PLZT Thin Films Derived from MOD Method. Key Eng. Mater. 2007, 280–283, 231–234. [Google Scholar] [CrossRef]
- Peng, C.H.; Chang, J.-F.; Desu, S.B. Optical Properties of PZT, PLZT, and PNZT Thin Films. MRS Proc. 1991, 243, 21–26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartek, N.; Shvartsman, V.V.; Bouyanfif, H.; Schmitz, A.; Bacher, G.; Olthof, S.; Sirotinskaya, S.; Benson, N.; Lupascu, D.C. Band Gap of Pb(Fe0.5Nb0.5)O3 Thin Films Prepared by Pulsed Laser Deposition. Materials 2021, 14, 6841. https://doi.org/10.3390/ma14226841
Bartek N, Shvartsman VV, Bouyanfif H, Schmitz A, Bacher G, Olthof S, Sirotinskaya S, Benson N, Lupascu DC. Band Gap of Pb(Fe0.5Nb0.5)O3 Thin Films Prepared by Pulsed Laser Deposition. Materials. 2021; 14(22):6841. https://doi.org/10.3390/ma14226841
Chicago/Turabian StyleBartek, Nicole, Vladimir V. Shvartsman, Houssny Bouyanfif, Alexander Schmitz, Gerd Bacher, Selina Olthof, Svetlana Sirotinskaya, Niels Benson, and Doru C. Lupascu. 2021. "Band Gap of Pb(Fe0.5Nb0.5)O3 Thin Films Prepared by Pulsed Laser Deposition" Materials 14, no. 22: 6841. https://doi.org/10.3390/ma14226841
APA StyleBartek, N., Shvartsman, V. V., Bouyanfif, H., Schmitz, A., Bacher, G., Olthof, S., Sirotinskaya, S., Benson, N., & Lupascu, D. C. (2021). Band Gap of Pb(Fe0.5Nb0.5)O3 Thin Films Prepared by Pulsed Laser Deposition. Materials, 14(22), 6841. https://doi.org/10.3390/ma14226841