The Correlation of Regional Microstructure and Mechanics of the Cervical Articular Process in Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Prepare
2.2. Micro-CT Scanning
2.3. Measurements of Bone Microstructure
2.4. Mechanical Compression Experiment
2.5. FEA Simulation
2.6. Statistical Analysis
3. Results
3.1. Regional Variation Microstructure of Articular Process
3.2. Simulation and Calculation of Finite Element Models in Articular Process Regions
3.3. Establishment of Correlation between Micro-CT Microstructure and Mechanical Properties Parameters of Mechanical Compression Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, S.P.; Huang, J.H.Y.; Brummett, C. Facet joint pain advances in patient selection and treatment. Nat. Rev. Rheumatol. 2013, 9, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Hulme, P.A.; Boyd, S.K.; Ferguson, S.J. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 2007, 41, 946–957. [Google Scholar] [CrossRef]
- Beaulieu, A.; Linden, A.Z.; Phillips, J.; Arroyo, L.G.; Koenig, J.; Monteith, G. Various 3D printed materials mimic bone ultrasonographically: 3D printed models of the equine cervical articular process joints as a simulator for ultrasound guided intra-articular injections. PLoS ONE 2019, 14, e0220332. [Google Scholar] [CrossRef] [Green Version]
- Schnackenburg, K.E.; Macdonald, H.M.; Ferber, R.; Wiley, J.P.; Boyd, S.K. Bone quality and muscle strength in female athletes with lower limb stress fractures. Med. Sci. Sports Exerc. 2011, 43, 2110–2119. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, G.; Xu, C.; Popp, K.L.; Hughes, J.M.; Yuan, A.; Guerriere, K.I.; Caksa, S.; Ackerman, K.E.; Bouxsein, M.L.; Reifman, J. Regional variation of bone density, microarchitectural parameters, and elastic moduli in the ultra distal tibia of young black and white men and women. Bone 2018, 112, 194–201. [Google Scholar] [CrossRef]
- Yang, G.; Battie, M.C.; Boyd, S.K.; Videman, T.; Wang, Y. Cranio-caudal asymmetries in trabecular architecture reflect vertebral fracture patterns. Bone 2017, 95, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Rodan, G.A. Mechanical loading, estrogen deficiency, and the coupling of bone formation to bone resorption. J. Bone Miner. Res. 1991, 6, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, F.; Fischbeck, M.; Kuhn, V.; Link, T.M.; Priemel, M.; Lochmuller, E.M. Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men. Bone 2004, 35, 364–374. [Google Scholar] [CrossRef]
- Buckley, J.M.; Cheng, L.; Loo, K.; Slyfield, C.; Xu, Z. Quantitative computed tomography-based predictions of vertebral strength in anterior bending. Spine 2007, 32, 1019–1027. [Google Scholar] [CrossRef]
- Friedmann, A.; Goehre, F.; Ludtka, C.; Mendel, T.; Meisel, H.-J.; Heilmann, A.; Schwan, S. Microstructure analysis method for evaluating degenerated intervertebral disc tissue. Micron 2017, 92, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Bentolila, V.; Boyce, T.M.; Fyhrie, D.P.; Drumb, R.; Skerry, T.M.; Schaffler, M.B. Intracortical remodeling in adult rat long bones after fatigue loading. Bone 1998, 23, 275–281. [Google Scholar] [CrossRef]
- Lee, T.C.; Staines, A.; Taylor, D. Bone adaptation to load: Microdamage as a stimulus for bone remodeling. J. Anat. 2002, 201, 437–446. [Google Scholar] [CrossRef]
- Gellhorn, A.C.; Katz, J.N.; Suri, P. Osteoarthritis of the spine: The facet joints. Nat. Rev. Rheumatol. 2013, 9, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.F.; He, J.B.; Su, G.Y.; Chen, M.H.; Hou, Y.; Chen, S.D.; Lin, D.K. Osteoporosis of the vertebra and osteochondral remodeling of the endplate cause intervertebral disc degeneration in ovariectomized mice. Arthritis Res. Ther. 2018, 20, 207. [Google Scholar] [CrossRef] [Green Version]
- Müller, R.; van Campenhout, H.; van Damme, B.; van der Perre, G.; Dequeker, J.; Hildebrand, T.; Rüegsegger, P. Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone 1998, 23, 59–66. [Google Scholar] [CrossRef]
- Ikeda, N.; Odate, S.; Shikata, J. Compensatory mechanisms for kyphotic change in the cervical spine according to alignment analysis of the cases after anterior cervical corpectomy and fusion. World Neurosurg. 2019, 133, e133–e240. [Google Scholar] [CrossRef]
- Zimmermann, E.A.; Köhne, T.; Bale, H.A.; Panganiban, B.; Gludovatz, B.; Zustin, J.; Hahn, M.; Amling, M.; Ritchie, R.O.; Busse, B. Modifications to nano- and microstructural quality and the effects on mechanical integrity in Paget’s disease of bone. J. Bone Miner. Res. 2015, 30, 264–273. [Google Scholar] [CrossRef]
- Pal, P.G.; Routal, R.V. A study of weight transmission through the cervical and upper thoracic regions of the vertebral column in man. J. Anat. 1986, 148, 245–261. [Google Scholar]
- Fink, H.A.; Langsetmo, L.; Vo, T.N.; Orwoll, E.S.; Schousboe, J.T.; Ensrud, K.E. Association of High-resolution Peripheral Quantitative Computed Tomography (HR-pQCT) bone microarchitectural parameters with previous clinical fracture in older men: The Osteoporotic Fractures in Men (MrOS) study. Bone 2018, 113, 49–56. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Lu, J. A general framework for the numerical solution of problems in finite elastoplasticity. Comput. Method. Appl. Mech. Eng. 1998, 159, 1–18. [Google Scholar] [CrossRef]
- Zhang, S.L. Numerical Analysis of Mechanical Properties of Subcartilage Bone in Osteoarthritis; Harbin Institute of Technology: Harbin, China, 2016. [Google Scholar]
- Vladimirov, I.N.; Reese, S. Anisotropic finite plasticity with combined hardening and application to sheet metal forming. Int. J. Mater. Form. 2008, 1, 293–296. [Google Scholar] [CrossRef]
- Shi, X.T.; Liu, X.S.; Wang, X.; Guo, X.E.; Niebur, G.L. Type and orientation of yielded trabeculae during overloading of trabecular bone along with orthogonal directions. J. Biomech. 2010, 43, 2460–2466. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.T.; Wang, X.; Niebur, G. Effects of Loading Orientation on the Morphology of the Predicted Yielded Regions in Trabecular Bone. Ann. Biomed. Eng. 2009, 37, 354–362. [Google Scholar] [CrossRef]
- Shi, X.; Liu, X.S.; Wang, X.; Guo, X.E.; Niebur, G.L. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone 2010, 46, 1260–1266. [Google Scholar] [CrossRef] [Green Version]
- Voss, S.; Beuing, O.; Janiga, G.; Berg, P. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)-Phase Ib: Effect of morphology on hemodynamics. PLoS ONE 2019, 14, e0216813. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.J.; Steffen, T. Biomechanics of the aging spine. Eur. Spine 2003, 12, S97–S103. [Google Scholar] [CrossRef] [Green Version]
- Denis, F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983, 8, 817–831. [Google Scholar] [CrossRef]
- Rydman, E.; Kasina, P.; Ponzer, S.; Järnbert-Pettersson, H. Association between cervical degeneration and self-perceived nonrecovery after whiplash injury. Spine 2019, 19, 1986–1994. [Google Scholar] [CrossRef]
- Baron, E.M.; Young, W.F. Cervical spondylotic myelopathy: A brief review of its pathophysiology, clinical course, and diagnosis. Neurosurgery 2007, 60, S35–S41. [Google Scholar] [CrossRef]
- Lochmüller, E.-M.; Matsuura, M.; Bauer, J.; Hitzl, W.; Link, T.M.; Müller, R.; Eckstein, F. Site-specific deterioration of trabecular bone architecture in men and women with advancing age. J. Bone Miner. Res. 2008, 23, 1964–1973. [Google Scholar] [CrossRef]
- Liu, X.S.; Cohen, A.; Shane, E.; Stein, E.; Rogers, H.; Kokolus, S.L.; Yin, P.T.; McMahon, D.J.; Lappe, J.M.; Recker, R.R.; et al. Individual trabeculae segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J. Bone Miner. Res. 2010, 25, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, C.; Clement, J.G.; Dicken, A.J.; Evans, J.P.O.; Lyburn, I.D.; Martin, R.M.; Rogers, K.D.; Stone, N.; Adams, G.; Zioupos, P. The micro-architecture of human cancellous bone from fractured neck of femur patients in relation to the structural integrity and fracture toughness of the tissue. Bone Rep. 2015, 3, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegrzyn, J.; Roux, J.-P.; Farlay, D.; Follet, H.; Chapurlat, R. The role of bone intrinsic properties measured by infrared spectroscopy in whole lumbar vertebra mechanics: Organic rather than inorganic bone matrix? Bone 2013, 56, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E. Bone quality: The material and structural basis of bone strength. J. Bone Miner. Metab. 2008, 26, 1–8. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, X.S.; Wang, J.; Lu, X.L.; Fields, A.J.; Guo, X.E. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J. Biomech. 2014, 47, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Norman, D.; Metcalfe, A.J.; Barlow, T.; Hutchinson, C.E.; Thompson, P.J.M.; Spalding, T.J.W.; Williams, M.A. Cortical Bony Thickening of the Lateral Intercondylar Wall: The Functional Attachment of the Anterior Cruciate Ligament. Am. J. Sports Med. 2017, 45, 394–402. [Google Scholar] [CrossRef] [Green Version]
Microstructure Parameters | Meaning | Relationship |
---|---|---|
Trabecular volume fraction, BV/TV | The ratio of bone trabecular volume to an area of interest volume | Positive correlation with bone load capacity and negatively correlated with osteoporosis, fracture, hyperplasia, and degeneration [6] |
Trabecular Number, Tb.N, mm−1 | Number of points of intersection between bone tissue and non-bone tissue | |
Trabecular Thickness, Tb.Th, mm | The average thickness of bone trabeculae | |
Bone Surface/Bone Volume, BS/BV, mm−1 | The ratio of the surface area of bone trabeculae to the volume of bone cerebellum | Negatively correlated with bone quality, when osteoporosis occurs, the value increases |
Trabecular Spacing, Tb.Sp, mm | The average width of the pulp cavity between the trabecular medulla | |
Trabecular Pattern Factor Tb.Pf, mm−1 | Representing bone trabeculectomy connectivity |
Regions | Lateral | Spine Level | |||||
---|---|---|---|---|---|---|---|
Lateral | Lateral | Spine Level | |||||
Spinal Level | |||||||
BV/TV | 5.01 *, 13.8 | 1.59, 2.4 | 3.74 *, 5.5 | 5.00, 4.8 | 3.78 *, 1.9 | 0.28, 0.7 | 5.00 *, 11.5 |
Tb.N | 3.27 *, 6.1 | 0.54, 0.8 | 2.39 *, 4.6 | 2.15 *, 14.4 | 0.52, 0.3 | 0.47, 1.2 | 9.43 *, 19.7 |
BS/BV | 6.15 *, 12.9 | 0.77, 1.2 | 3.22 *, 4.8 | 0.52, 3.9 | 3.18, 1.6 | 0.32, 0.8 | 3.98 *, 9.4 |
Tb.Th | 4.22 *, 13.2 | 0.81, 1.2 | 2.42 *, 4.5 | 0.58, 4.4 | 4.01 *, 2.0 | 0.14, 0.4 | 4.69 *, 10.9 |
Tb.Sp | 4.91 *, 12.7 | 1.06, 1.6 | 2.85 *, 4.3 | 1.25, 8.9 | 1.86, 1.0 | 0.40, 1.0 | 7.73 *, 16.8 |
Tb.Pf | 4.25 *, 13.1 | 0.93, 1.4 | 1.01, 1.6 | 1.58, 11 | 1.12, 0.6 | 1.04, 2.6 | 3.88 *, 9.2 |
Parameters | p-Value | Adjusted R-Squared | Linear Regression Equation |
---|---|---|---|
BV/TV & Young’s modulus | 0.000 a | 0.5676 | y = 299.667x − 76.9 |
Tb.N & Young’s modulus | 0.015 a | 0.0354 | y = 53.0571x − 11.586 |
BS/BV & Young’s modulus | 0.000 a | 0.1372 | y = −9.8457x + 150.229 |
Tb.Sp & Young’s modulus | 0.000 a | 0.2693 | y = −253.36x + 154.622 |
Tb.Pf & Young’s modulus | 0.000 a | 0.1237 | y = −16.0653x + 63.5428 |
Tb.Th & Young’s modulus | 0.000 a | 0.3535 | y = 446.5234x − 40.257 |
Density & Young’s modulus | 0.000 a | 0.6382 | y = 202.9904x − 191.3834 |
BV/TV & Force(max) | 0.000 a | 0.3260 | y = 1194.207x − 209.975 |
BS/BV & Force(max) | 0.000 a | 0.2702 | y = −1493.28x + 815.159 |
Tb.Sp & Force(max) | 0.008 a | 0.0411 | y = −710.25x + 516.253 |
Tb.Pf & Force(max) | 0.031 a | 0.0263 | y = −45.527x + 287.201 |
Density & Force(max) | 0.015 a | 0.0341 | y = −16.0653x + 63.5428 |
Tb.Pf & Stress(max) | 0.015 a | 0.1035 | y = −1.905x + 7.227 |
Tb.Th & Stress(max) | 0.000 a | 0.1672 | y = 10.205x − 7.925 |
Density & Stress(max) | 0.000 a | 0.4531 | y = 0.014x + 0.478 |
BV/TV & Strain(max) | 0.026 a | 0.0844 | y = −361.195x + 2.48 |
Density & Strain(max) | 0.099 | 0.0124 | - |
Density & Yield Strength | 0.000 a | 0.5227 | y = 11.9x − 11.799 |
BV/TV & Density | 0.000 a | 0.5259 | y = 1.006x + 0.935 |
Tb.N & Density | 0.000 a | 0.3932 | y = 0.634x + 0.22 |
Tb.N & Stress(safe) | 0.084 | 0.0437 | - |
Density & Stress(safe) | 0.000 a | 0.5426 | y = 18.962x − 19.253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Ma, Y.; Wang, S.J.; Zhang, S.; Li, Z. The Correlation of Regional Microstructure and Mechanics of the Cervical Articular Process in Adults. Materials 2021, 14, 6409. https://doi.org/10.3390/ma14216409
Feng H, Ma Y, Wang SJ, Zhang S, Li Z. The Correlation of Regional Microstructure and Mechanics of the Cervical Articular Process in Adults. Materials. 2021; 14(21):6409. https://doi.org/10.3390/ma14216409
Chicago/Turabian StyleFeng, Huimei, Yuan Ma, Stephen Jia Wang, Shaojie Zhang, and Zhijun Li. 2021. "The Correlation of Regional Microstructure and Mechanics of the Cervical Articular Process in Adults" Materials 14, no. 21: 6409. https://doi.org/10.3390/ma14216409
APA StyleFeng, H., Ma, Y., Wang, S. J., Zhang, S., & Li, Z. (2021). The Correlation of Regional Microstructure and Mechanics of the Cervical Articular Process in Adults. Materials, 14(21), 6409. https://doi.org/10.3390/ma14216409