Suitability of Engineering-Geological Environment on the Basis of Its Permeability Coefficient: Four Case Studies of Fine-Grained Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Soil Materials
2.2. Methods Used to Determine the Permeability Coefficient
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agus, S.S.; Leong, E.C.; Rahardjo, H. Estimating permeability functions of Singapore residual soils. Eng. Geol. 2005, 78, 119–133. [Google Scholar] [CrossRef]
- Srivastava, A.; Babu, G.L.S.; Haldar, S. Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis. Eng. Geol. 2010, 110, 93–101. [Google Scholar] [CrossRef]
- Li, W.C.; Lee, L.M.; Cai, H.; Li, H.J.; Dai, F.C.; Wang, M.L. Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope. Eng. Geol. 2013, 153, 105–113. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.J.; Tang, A.M.; Benahmed, N.; Duc, M. Effects of aggregate size on the compressibility and air permeability of lime-treated fine-grained soil. Eng. Geol. 2017, 228, 167–172. [Google Scholar] [CrossRef]
- Abdila, S.R.; Abdullah, M.M.A.B.; Ahmad, R.; Rahim, S.Z.A.; Rychta, M.; Wnuk, I.; Nabiałek, M.; Muskalski, K.; Tahir, M.F.M.; Syafwandi; et al. Evaluation on the Mechanical Properties of Ground Granulated Blast Slag (GGBS) and Fly Ash Stabilized Soil via Geopolymer Process. Materials 2021, 14, 2833. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.M.M.; Feng, C.-P.; Ahmed, S.H.S. Modification of mechanical properties of expansive soil from north china by using rice husk ash. Materials 2021, 14, 2789. [Google Scholar] [CrossRef] [PubMed]
- Shaker, A.A.; Al-Shamrani, M.A.; Moghal, A.A.B.; Vydehi, K.V. Effect of confining conditions on the hydraulic conductivity behavior of fiber-reinforced lime blended semiarid soil. Materials 2021, 14, 3120. [Google Scholar] [CrossRef]
- Sridharan, A.; Nagaraj, H.B. Hydraulic conductivity of remolded fine-grained soils versus index properties. Geotech. Geol. Eng. 2005, 23, 43. [Google Scholar] [CrossRef]
- Ren, X.W.; Santamarina, J.C. The hydraulic conductivity of sediments: A pore size perspective. Eng. Geol. 2018, 233, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Kodikara, J.K.; Rahman, F. Effects of specimen consolidation on the laboratory hydraulic conductivity measurement. Can. Geotech. J. 2002, 39, 908–923. [Google Scholar] [CrossRef]
- Chapuis, R.P.; Aubertin, M. On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils. Can. Geotech. J. 2003, 40, 616–628. [Google Scholar] [CrossRef]
- Masrouri, F.; Bicalho, K.V.; Kawai, K. Laboratory Hydraulic Testing in Unsaturated Soils. Geotech. Geol. Eng. 2008, 26, 691–704. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, Y.; Deng, Q.; Kang, J.; Li, D.; Wang, D. A relation of hydraulic conductivity—Void ratio for soils based on Kozeny-Carman equation. Eng. Geol. 2016, 213, 89–97. [Google Scholar] [CrossRef]
- Akbulut, S. Artificial neural networks for predicting the hydraulic conductivity of coarse-grained soils. Eurasian Soil Sci. 2005, 38, 392–398. [Google Scholar]
- Pap, M.; Mahler, A. Comparison of Different empirical correlations to estimate permeability coefficient of quaternary danube soils. Period. Polytech. Civ. Eng. 2019, 63, 25–29. [Google Scholar] [CrossRef]
- Nagy, L.; Tabácks, A.; Huszák, T.; Mahler, A.; Varga, G. Comparison of permeability testing methods. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, (ICSMGE 2013), Paris, France, 2–6 September 2013; Volume 1, pp. 399–402. [Google Scholar]
- Kasenov, M. Determination of Hydraulic Conductivity from Grain Size Analysis; Water Resources Publication, LCC: Highlands Ranch, CO, USA, 2002. [Google Scholar]
- Cabalar, A.F.; Akbulut, N. Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape. Springerplus 2016, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Odong, J. Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity based on Grain-Size Analysis. J. Am. Sci. 2008, 4, 1–6. [Google Scholar]
- Wu, Z.; Shen, Y.; Wang, H.; Wu, M. Assessing urban flood disaster risk using Bayesian network model and GIS applications. Geomat. Nat. Hazards Risk 2019, 10, 2163–2184. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Zhu, J.; Gu, W. Prediction Method for Hydraulic Conductivity considering the Effect of Sizes of Ellipsoid Soil Particles from the Microscopic Perspective. Adv. Civ. Eng. 2019, 2019, 7213094. [Google Scholar] [CrossRef] [Green Version]
- Říha, J.; Petrula, L.; Hala, M.; Alhasan, Z. Assessment of empirical formulae for determining the hydraulic conductivity of glass beads. J. Hydrol. Hydromech. 2018, 66, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.F.; Zeng, J.; Shi, H.; Wang, Y.; Hu, R.; Yang, Z.; Zhou, C.B. Variation in hydraulic conductivity of fractured rocks at a dam foundation during operation. J. Rock Mech. Geotech. Eng. 2021, 13, 351–367. [Google Scholar] [CrossRef]
- Stark, T.D.; Jafari, N.H.; Zhindon, J.S.L.; Baghdady, A. Unsaturated and transient seepage analysis of san luis dam. J. Geotech. Geoenvironmental Eng. 2017, 143, 04016093. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wei, W.; Bao, H.; Zhang, K.; Lan, H.; Yan, C.; Sun, W. Failure models of a loess stacked dam: A case study in the Ansai Area (China). Bull. Eng. Geol. Environ. 2020, 79, 1009–1021. [Google Scholar] [CrossRef]
- Masset, O.; Loew, S. Hydraulic conductivity distribution in crystalline rocks, derived from inflows to tunnels and galleries in the Central Alps, Switzerland. Hydrogeol. J. 2010, 18, 863–891. [Google Scholar] [CrossRef]
- Hilton, A.B.C.; Culver, T.B. Groundwater Remediation Design under Uncertainty Using Genetic Algorithms. J. Water Resour. Plan. Manag. 2005, 131, 25–34. [Google Scholar] [CrossRef]
- Zięba, Z. Influence of soil particle shape on saturated hydraulic conductivity. J. Hydrol. Hydromech. 2017, 65, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Santamarina, J.C.; Cho, G.C. Soil behaviour: The role of particle shape. In Advances in Geotechnical Engineering: The Skempton Conference, Proceedings of the Three Day Conference on Advances in Geotechnical Engineering, London, UK, 29–31 March 2004; Institution of Civil Engineers: London, UK, 2004; pp. 604–617. [Google Scholar]
- Peña, A.A.; García-Rojo, R.; Herrmann, H.J. Influence of particle shape on sheared dense granular media. Granul. Matter 2007, 9, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Masad, E.; Saadeh, S.; Al-Rousan, T.; Garboczi, E.; Little, D. Computations of particle surface characteristics using optical and X-ray CT images. Comput. Mater. Sci. 2005, 34, 406–424. [Google Scholar] [CrossRef]
- Parylak, K. Characteristic of particles shape of finegrained cohesionless soils and its significance in strength assessment. Zesz. Nauk. Politech. Śląskiej 2000, 90, 130. [Google Scholar]
- Nimmo, J.R. Porosity and Pore Size Distribution. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: London, UK, 2004; Volume 3, pp. 295–303. [Google Scholar]
- Meegoda, J.N.; Ratnaweera, P. Prediction of Effective Porosity of Contaminated Fine Grained Soils Using Electrical Properties. Geotech. Test. J. 2008, 31, 344–357. [Google Scholar]
- Paradis, C.J.; McKay, L.D.; Perfect, E.; Istok, J.D.; Hazen, T.C. Push-pull tests for estimating effective porosity: Expanded analytical solution and in situ application. Hydrogeol. J. 2018, 26, 381–393. [Google Scholar] [CrossRef]
- Yan-Long, L.; Tie-Hang, W.; Li-Jun, S. Determination of bound water content of loess soils by isothermal adsorption and thermogravimetric analysis. Soil Sci. 2015, 180, 90–96. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, M.; Kumar, P.; Gao, Q.F. Influence of Loosely Bound Water on Compressibility of Compacted Fine-Grained Soils. Adv. Civ. Eng. 2020, 2020, 496241. [Google Scholar] [CrossRef]
- Wieczysty, A. Engineering Hydrogeology; PWN: Warszawa, Poland, 1982. [Google Scholar]
- Carrier, W.D. Goodbye, Hazen; Hello, Kozeny-Carman. J. Geotech. Geoenviron. Eng. 2003, 129, 1054–1056. [Google Scholar] [CrossRef]
- Lu, C.; Chen, X.; Cheng, C.; Ou, G.; Shu, L. Horizontal hydraulic conductivity of shallow streambed sediments and comparison with the grain-size analysis results. Hydrol. Process. 2012, 26, 454–466. [Google Scholar] [CrossRef]
- Rosas, J.; Lopez, O.; Missimer, T.M.; Coulibaly, K.M.; Dehwah, A.H.A.; Sesler, K.; Lujan, L.R.; Mantilla, D. Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Groundwater 2014, 52, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Head, K.H.; Epps, R.J. Manual of Soil Laboratory Testing, Volume 2: Permeability, Shear Strength and Compressibility Tests, 3rd ed.; Whittles Publishing: Dunbeath Mill, UK, 2011. [Google Scholar]
- Kozłowski, T.; Kurpias-Warianek, K.; Walaszczyk, Ł. Application of sem to analysis of permeability coefficient of cohesive soils. Arch. Hydro-Eng. Environ. Mech. 2011, 58, 47–64. [Google Scholar]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2003. [Google Scholar]
- Naeej, M.; Naeej, M.R.; Salehi, J.; Rahimi, R. Hydraulic conductivity prediction based on grain-size distribution using M5 model tree. Geomech. Geoengin. 2016, 12, 107–114. [Google Scholar] [CrossRef]
- Dolzyk, K.; Chmielewska, I. Predicting the coefficient of permeability of non-plastic soils. Soil Mech. Found. Eng. 2014, 51, 213–218. [Google Scholar] [CrossRef]
- Elhakim, A.F. Estimation of soil permeability. Alex. Eng. J. 2016, 55, 2631–2638. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.-T.; Jeen, S.-W.; Suleiman, A.A.; Lee, K.-K. Comparison of saturated hydraulic conductivity estimated by three different methods. Water 2017, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Muszynski, M.R.; Vitton, S.J. Particle shape estimates of uniform sands: Visual and automated methods comparison. J. Mater. Civ. Eng. 2012, 24, 194–206. [Google Scholar] [CrossRef]
- Lambe, T.W.; Whitman, R.V. Soil Mechanics; Whiley: New York, NY, USA, 1969. [Google Scholar]
- Srivastava, A.; Babu, G.L.S. Effect of soil variability on the bearing capacity of clay and in slope stability problems. Eng. Geol. 2009, 108, 142–152. [Google Scholar] [CrossRef]
- Xu, Y. Bearing capacity of unsaturated expansive soils. Geotech. Geol. Eng. 2004, 22, 611–625. [Google Scholar] [CrossRef]
- Roy, D.; Robinson, K.E. Surface settlements at a soft soil site due to bedrock dewatering. Eng. Geol. 2009, 107, 109–117. [Google Scholar] [CrossRef]
- Hasanpour, R.; Chakeri, H.; Ozcelik, Y.; Denek, H. Evaluation of surface settlements in the Istanbul metro in terms of analytical, numerical and direct measurements. Bull. Eng. Geol. Environ. 2012, 71, 499–510. [Google Scholar] [CrossRef]
- ISO-14688-2:2004 Geotechnical Investigation and Testing. Identification and Classification of Soil. Part 2: Principles for a Classification; Technical Committee: ISO/TC 182 Geotechnics; ISO: London, UK, 2004; pp. 1–13.
- Marschalko, M.; Bednárik, M.; Yilmaz, I. Evaluation of engineering-geological conditions for conurbation of Ostrava (Czech Republic) within GIS environment. Environ. Earth Sci. 2012, 67, 1007–1022. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Kubečka, K.; Bouchal, T.; Bednarik, M.; Peňáz, T. Utilization of an underground mining evaluation map incorporating the effect of landslides and surface flooding for land-use purpose. Bull. Eng. Geol. Environ. 2014, 73, 1117–1126. [Google Scholar] [CrossRef]
- Dunčková, L.; Bednarik, M.; Krčmář, D.; Marschalko, M.; Tornyai, R. GIS-based multicriteria evaluation of foundation conditions. Bull. Eng. Geol. Environ. 2019, 78, 2903–2917. [Google Scholar] [CrossRef]
- Popielarczyk, D.; Marschalko, M.; Templin, T.; Niemiec, D.; Yilmaz, I.; Matuszková, B. Bathymetric Monitoring of Alluvial River Bottom Changes for Purposes of Stability of Water Power Plant Structure with a New Methodology for River Bottom Hazard Mapping (Wloclawek, Poland). Sensors 2020, 20, 5004. [Google Scholar] [CrossRef]
Soil Type | Density Index | Particle Size Diameter | Total Porosity | Effective Porosity | Total Shape Index | Specific Surface Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | d10 | d20 | d30 | d40 | d50 | d60 | d70 | d80 | d90 | n | ne | ζ0C | S0 | |
[%] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [–] | [–] | [–] | [m2·g−1] | |
Glass microbeads (GM) | 10 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.071 | 0.091 | 0.120 | 0.229 | 0.38 | 0.38 | 1.0 | 0.268 |
30 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.071 | 0.091 | 0.120 | 0.229 | 0.36 | 0.36 | 1.0 | 0.268 | |
60 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.071 | 0.091 | 0.120 | 0.229 | 0.32 | 0.32 | 1.0 | 0.268 | |
90 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.071 | 0.091 | 0.120 | 0.229 | 0.27 | 0.27 | 1.0 | 0.268 | |
Sandy silt from Krakowiany (SK) | 10 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.47 | 0.31 | 0.67 | 0.395 |
30 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.44 | 0.29 | 0.67 | 0.395 | |
60 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.40 | 0.27 | 0.67 | 0.395 | |
90 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.35 | 0.23 | 0.67 | 0.395 | |
Sandy silt from Graniczna (SG) | 10 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.50 | 0.29 | 0.58 | 0.448 |
30 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.48 | 0.28 | 0.58 | 0.448 | |
60 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.44 | 0.26 | 0.58 | 0.448 | |
90 | 0.021 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.40 | 0.23 | 0.58 | 0.448 | |
Fly ash (FA) | 10 | 0.019 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.51 | 0.24 | 0.48 | 1.340 |
30 | 0.019 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.49 | 0.24 | 0.48 | 1.340 | |
60 | 0.019 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.45 | 0.22 | 0.48 | 1.340 | |
90 | 0.019 | 0.027 | 0.033 | 0.043 | 0.060 | 0.080 | 0.110 | 0.160 | 0.229 | 0.41 | 0.20 | 0.48 | 1.340 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marschalko, M.; Zięba, Z.; Niemiec, D.; Neuman, D.; Mońka, J.; Dąbrowska, J. Suitability of Engineering-Geological Environment on the Basis of Its Permeability Coefficient: Four Case Studies of Fine-Grained Soils. Materials 2021, 14, 6411. https://doi.org/10.3390/ma14216411
Marschalko M, Zięba Z, Niemiec D, Neuman D, Mońka J, Dąbrowska J. Suitability of Engineering-Geological Environment on the Basis of Its Permeability Coefficient: Four Case Studies of Fine-Grained Soils. Materials. 2021; 14(21):6411. https://doi.org/10.3390/ma14216411
Chicago/Turabian StyleMarschalko, Marian, Zofia Zięba, Dominik Niemiec, David Neuman, Jakub Mońka, and Jolanta Dąbrowska. 2021. "Suitability of Engineering-Geological Environment on the Basis of Its Permeability Coefficient: Four Case Studies of Fine-Grained Soils" Materials 14, no. 21: 6411. https://doi.org/10.3390/ma14216411
APA StyleMarschalko, M., Zięba, Z., Niemiec, D., Neuman, D., Mońka, J., & Dąbrowska, J. (2021). Suitability of Engineering-Geological Environment on the Basis of Its Permeability Coefficient: Four Case Studies of Fine-Grained Soils. Materials, 14(21), 6411. https://doi.org/10.3390/ma14216411