Experimental Study Regarding the Behavior at Different pH of Two Types of Co-Cr Alloys Used for Prosthetic Restorations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Co-Cr Alloys
3.1.1. Morphology
3.1.2. Chemical Composition
3.1.3. Corrosion Resistance Testing in Artificial Saliva
- Monitoring of open circuit potential (EOC), for a period of 6 h;
- Tafel plots from −200 mV (vs. EOC) to +200 mV (vs. EOC), at a scanning rate of 1 mV/s;
- Plotting the linear polarization curves (of the potential dynamic curves) from −1 V (vs. EOC) to +1 V (vs. ERef) at a scanning rate of 1 mV/s.
- βa—anodic slope;
- βc—cathodic slope;
- icorr—corrosion current density.
- CR—corrosion rate;
- Ki—3.27 × 10−3;
- material density;
- icorr—corrosion current density;
- EW—equivalent weight.
3.2. Surface Morphology after Corrosion Tests
4. Discussion
5. Conclusions
- Commercial Co-Cr alloys have the chemical composition specified by the manufacturer, and only small differences were noted;
- All the constitutive elements of both alloys are uniformly distributed in their mass;
- From the corrosion tests, the following was noted:
- Both alloys presented the lowest corrosion current density, the highest polarization resistance, and the lowest corrosion rate, and thus, suggesting a better corrosion behavior in artificial saliva with the highest pH (7.6);
- A similar tendency, in terms of electrochemical values, were found for both alloys in the case of the corrosion tests performed at pH values of 7.6 and 5.7;
- The lowest corrosion rates values related to the pH of artificial saliva were obtained for the milled Co-Cr alloy (Co-Cr alloyed with W);
- The cast Co-Cr alloy (Co-Cr alloyed with Mo) had smaller but very close values in terms of electrochemical parameters, indicating a poorer corrosion resistance than the milled alloy exhibited (W-alloyed Co-Cr alloy).
- Due to a more homogeneous microstructure and fewer casting defects, the milled Co-Cr alloy exhibits a better corrosion resistance;
- After the corrosion tests, it was noted that the surface of the samples exposed to the electrolyte is tinted/colored, and by increasing the pH of the electrolyte, the color of the exposed surface turns towards darker shades, suggesting a dependency between the thickness of the oxide film and the ph value of the electrolyte;
- SEM investigations of the surfaces of the Co-Cr alloy after the corrosion tests revealed no forms of corrosion, indicating that the oxide layer formed on the surface is stable;
- In the case of both Co-Cr alloys, it is observed that as the pH value of the electrolyte increases, the amount of oxygen also increases, suggesting that the pH value of the test solution influences the formation of these oxides on their surface and that with the increase in pH also the number of oxides formed increases.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cotrut, C.M.; Parau, A.C.; Gherghilescu, A.I.; Titorencu, I.; Pana, I.; Cojocaru, D.V.; Pruna, V.; Constantin, L.; Dan, I.; Vranceanu, D.M.; et al. Mechanical, In Vitro Corrosion Resistance and Biological Compatibility of Cast and Annealed Ti25Nb10Zr Alloy. Metals 2017, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Gheorghe, D.; Pencea, I.; Antoniac, I.V.; Turcu, R.-N. Investigation of the Microstructure, Hardness and Corrosion Resistance of a New 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn Dental Alloy. Materials 2019, 12, 4199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaguchi, R.L.; Ferracane, J.; Powers, J.M. Craig’s Restorative Dental Materials, 14th ed.; Mosby Imprint: Maryland Heights, MD, USA, 2018; pp. 91, 178–183, 190–201. [Google Scholar]
- Kassapidou, M.; Hjalmarsson, L.; Johansson, C.B.; Johansson, P.H.; Morisbak, E.; Wennerberg, A.; Stenport, V.F. Cobalt–chromium alloys fabricated with four different techniques: Ion release, toxicity of released elements and surface roughness. Dent. Mater. 2020, 36, e352–e363. [Google Scholar] [CrossRef] [PubMed]
- Vaicelyte, A.; Janssen, C.; Le Borgne, M.; Grosgogeat, B. Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. Crystals 2020, 10, 1151. [Google Scholar] [CrossRef]
- Padrós, R.; Giner-Tarrida, L.; Herrero-Climent, M.; Punset, M.; Gil, F.J. Corrosion Resistance and Ion Release of Dental Prosthesis of CoCr Obtained by CAD-CAM Milling, Casting and Laser Sintering. Metals 2020, 10, 827. [Google Scholar] [CrossRef]
- Stašková, A.; Nemcová, R.; Lauko, S.; Jenča, A. Oral Microbiota from the Stomatology Perspective. In Bacterial Biofilms; Melis, D.S., Özdenefe, S., Arkut, A., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarrett, D.M.; Hachem, C. Gastroesophageal Reflux Disease (GERD). Mo. Med. 2018, 115, 214–218. [Google Scholar]
- Akinola, M.A.; Oyedele, T.A.; Akande, K.O.; Oluyemi, O.Y.; Salami, O.F.; Adesina, A.M.; Adebajo, A.D. Gastroesophageal reflux disease: Prevalence and Extraesophageal manifestations among undergraduate students in South West Nigeria. BMC Gastroenterol. 2020, 20, 160. [Google Scholar] [CrossRef]
- Lin, S.; Li, H.; Fang, X. Esophageal Motor Dysfunctions in Gastroesophageal Reflux Disease and Therapeutic Perspectives. J. Neurogastroenterol. Motil. 2019, 25, 499–507. [Google Scholar] [CrossRef]
- Richter, J.E.; Rubenstein, J.H. Presentation and Epidemiology of Gastroesophageal Reflux Disease. Gastroenterol. 2018, 154, 267–276. [Google Scholar] [CrossRef]
- Patel, A.; Amaechi, B.T.; Brady, C. Prevention and Control of Dental Erosion: Gastroesophageal Reflux Disease Management. In Dental Erosion and Its Clinical Management; Springer International Publishing: Cham, Switzerland, 2015; pp. 203–224. [Google Scholar]
- Antunes, C.; Aleem, A.; Curtis, S.A. Gastroesophageal Reflux Disease. [Updated 10 January 2021]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441938/ (accessed on 24 July 2021).
- Eusebi, L.H.; Ratnakumaran, R.; Yuan, Y.; Solaymani-Dodaran, M.; Bazzoli, F.; Ford, A.C. Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms: A meta-analysis. Gut 2018, 67, 430–440. [Google Scholar] [CrossRef]
- Yaseri, H.F. Gender is a risk factor in patients with gastroesophageal reflux disease. Med. J. Islam. Repub. Iran 2017, 31, 336–338. [Google Scholar] [CrossRef]
- Warsi, I.; Ahmed, J.; Younus, A.; Rasheed, A.; Akhter, T.S.; Ain, Q.U.; Khurshid, Z. Risk factors associated with oral manifestations and oral health impact of gastro-oesophageal reflux disease: A multicentre, cross-sectional study in Pakistan. BMJ Open 2019, 9, e021458. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.; Hassan, M. Gastroesophageal Reflux Disease. Pediatr. Clin. N. Am. 2017, 64, 487–505. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Nakatani, E.; Yoshikawa, H.; Kanno, T.; Nariai, Y.; Yoshino, A.; Vieth, M.; Kinoshita, Y.; Sekine, J. Oral soft tissue disorders are associated with gastroesophageal reflux disease: Retrospective study. BMC Gastroenterol. 2017, 17, 92. [Google Scholar] [CrossRef] [Green Version]
- Jajam, M.; Bozzolo, P.; Niklander, S. Oral manifestations of gastrointestinal disorders. J. Clin. Exp. Dent. 2017, 9, e1242–e1248. [Google Scholar] [CrossRef]
- Kawar, N.; Park, S.G.; Schwartz, J.L.; Callahan, N.; Obrez, A.; Yang, B.; Chen, Z.; Adami, G.R. Salivary microbiome with gastroesophageal reflux disease and treatment. Sci. Rep. 2021, 11, 188. [Google Scholar] [CrossRef] [PubMed]
- Armencia, A.O.; Hurjui, I.; Tărniceriu, C.C.; Lese, A.; Feier, R.; Scutariu, M.M.; Balcos, C. The study of roughness and re-sistance to corrosion of dental alloys in the oral environment. Rom. J. Oral Rehabil. 2020, 12, 190–197. [Google Scholar]
- Tsutsumi, Y.; Doi, H.; Nomura, N.; Ashida, M.; Chen, P.; Kawasaki, A.; Hanawa, T. Surface Composition and Corrosion Resistance of Co-Cr Alloys Containing High Chromium. Spec. Issue Adv. Biomed. Mater. Sci. Technol. 2016, 57, 2033–2040. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Gangwar, S. An Overview on Recent progresses and future perspective of biomaterials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 404, 012013. [Google Scholar] [CrossRef]
- Festas, A.; Ramos, A.; Davim, J.P. Medical devices biomaterials-A review. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 234, 218–228. [Google Scholar] [CrossRef]
- Rylska, D.; Januszewicz, B.; Sokołowski, G.; Sokołowski, J. Corrosion Resistance of Cr–Co Alloys Subjected to Porcelain Firing Heat Treatment—In Vitro Study. Processes 2021, 9, 636. [Google Scholar] [CrossRef]
- Han, X.; Sawada, T.; Schille, C.; Schweizer, E.; Scheideler, L.; Geis-Gerstorfer, J.; Rupp, F.; Spintzyk, S. Comparative Analysis of Mechanical Properties and Metal-Ceramic Bond Strength of Co-Cr Dental Alloy Fabricated by Different Manufacturing Processes. Materials 2018, 11, 1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragus, L.; Ghergic, D.L.; Comaneanu, R.M.; Bechir, A.; Coman, C.; Botoaca, O. In Vitro Comparative Tests About the Bio-compatibility of Some Dental Alloys. Rev. Chim. 2019, 70, 610–613. [Google Scholar] [CrossRef]
- Kassapidou, M.; Stenport, V.F.; Hjalmarsson, L.; Johansson, C.B. Cobalt-chromium alloys in fixed prosthodontics in Sweden. Acta Biomater. Odontol. Scand. 2017, 3, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Soares, F.M.D.S.; Santana, A.I.D.C.; dos Santos, L.B.F.; Gomes, P.A.M.C.; Monteiro, E.D.S.; Coimbra, M.E.R.; Elias, C.N. Influence of oral pH Environment in the Corrosion Resistance of Cr-Co-Mo alloy Used for Dentistry Prosthetic Components. Mater. Res. 2019, 22. [Google Scholar] [CrossRef]
- E Savencu, C. Corrosion Behaviour of Co-Cr Dental Alloys Processed by Alternative CAD/CAM Technologies in Artificial Saliva Solutions. Int. J. Electrochem. Sci. 2018, 13, 3588–3600. [Google Scholar] [CrossRef]
- Kim, H.R.; Jang, S.-H.; Kim, Y.K.; Son, J.S.; Min, B.K.; Kim, K.-H.; Kwon, T.-Y. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques. Materials 2016, 9, 596. [Google Scholar] [CrossRef]
- Mercieca, S.; Conti, M.C.; Buhagiar, J.; Camilleri, J. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments. J. Appl. Biomater. Funct. Mater. 2018, 16, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Haugli, K.H.; Syverud, M.; Samuelsen, J.T. Ion release from three different dental alloys-effect of dynamic loading and toxicity of released elements. Biomater. Investig. Dent. 2020, 7, 71–79. [Google Scholar] [CrossRef]
- Alnazzawi, A.A. Oral diseases associated with fixed prosthodontic restorations. Saudi Med J. 2017, 38, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Rodphon, M.; Sri-in, S.; Khovidhunkit, S.P. Prevalence of oral lesions and conditions in a group of patients at the Faculty of Dentistry, Mahidol University. Mahidol Dent. J. 2020, 40, 36–43. [Google Scholar]
- Lugović-Mihić, L.; Ilić, I.; Budimir, J.; Pondeljak, N.; Stipetić, M.M. Common Allergies and Allergens in Oral and Perioral Diseases. Acta Clin. Croat. 2020, 59, 318–328. [Google Scholar] [CrossRef]
- Yu, J.-M.; Kang, S.-Y.; Lee, J.-S.; Jeong, H.-S.; Lee, S.-Y. Mechanical Properties of Dental Alloys According to Manufacturing Process. Materials 2021, 14, 3367. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Huang, X.; Zhou, X.; Li, M.; Ren, B.; Peng, X.; Cheng, L. Influence of Dental Prosthesis and Restorative Materials Interface on Oral Biofilms. Int. J. Mol. Sci. 2018, 19, 3157. [Google Scholar] [CrossRef] [Green Version]
- Lavanya, M. A Brief Insight into Microbial Corrosion and its Mitigation with Eco-friendly Inhibitors. J. Bio Tribo Corros. 2021, 7, 125. [Google Scholar] [CrossRef]
- Musa, A.Y.; Behazin, M.; Wren, J.C. Potentiostatic Oxide Growth Kinetics on Ni-Cr and Co-Cr Alloys: Potential and pH De-pendences. Electrochim. Acta 2015, 162, 185–197. [Google Scholar] [CrossRef]
- Nierlich, J.; Papageorgiou, S.N.; Bourauel, C.; Hültenschmidt, R.; Bayer, S.; Stark, H.; Keilig, L. Corrosion behavior of dental alloys used for retention elements in prosthodontics. Eur. J. Oral Sci. 2016, 124, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Banaszek, K.; Klimek, L. Ti(C, N) as Barrier Coatings. Coatings 2019, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Rani, A.M.A.; Baig, Z.; Ahmed, S.W.; Hussain, G.; Subramaniam, K.; Hastuty, S.; Rao, T.V. Biocompatibility and corrosion resistance of metallic biomaterials. Corros. Rev. 2020, 38, 381–402. [Google Scholar] [CrossRef]
- Nandish, B.; Jayaprakash, K.; Shetty, H.K.; Rao, S.; Ginjupalli, K.; Chandrashekhar, H.R.; Prabhu, S. The effects of recasting on the cytotoxicity of dental base metal casting alloys. J. Conserv. Dent. 2020, 23, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Moslehifard, E.; Ghaffari, T.; Mohammadian-Navid, S.; Ghafari-Nia, M.; Farmani, A.; Nasirpouri, F. Effect of chemical passivation on corrosion behavior and ion release of a commercial chromium-cobalt alloy. J. Dent. Res. Dent. Clin. Dent. Prospect. 2020, 14, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Mystkowska, J.; Niemirowicz-Laskowska, K.; Łysik, D.; Tokajuk, G.; Dąbrowski, J.R.; Bucki, R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects. Int. J. Mol. Sci. 2018, 19, 743. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Ledesma, A.L.; Roncagliolo, P.; Álvarez-Pérez, M.A.; Lopez, H.F.; Juárez-Islas, J.A. Corrosion Assessment of an Implantable Dental Co-Cr Alloy in Artificial Saliva and Biocompatibility Behavior. J. Mater. Eng. Perform. 2020, 29, 1657–1670. [Google Scholar] [CrossRef]
- Kubala, E.; Strzelecka, P.; Grzegocka, M.; Lietz-Kijak, D.; Gronwald, H.; Skomro, P.; Kijak, E. A Review of Selected Studies That Determine the Physical and Chemical Properties of Saliva in the Field of Dental Treatment. BioMed Res. Int. 2018, 2018, 6572381. [Google Scholar] [CrossRef]
- Caruso, A.A.; Del Prete, S.; Ferrara, L.; Serra, R.; Telesca, D.A.; Ruggiero, S.; Russo, T.; Sivero, L. Relationship between gastroesophageal reflux disease and Ph nose and salivary: Proposal of a simple method outpatient in patients adults. Open Med. 2016, 11, 381–386. [Google Scholar] [CrossRef]
- Noumbissi, S.; Scarano, A.; Gupta, S. A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry. Materials 2019, 12, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minciullo, P.L.; Paolino, G.; Vacca, M.; Gangemi, S.; Nettis, E. Unmet diagnostic needs in contact oral mucosal allergies. Clin. Mol. Allergy 2016, 14, 10. [Google Scholar] [CrossRef] [Green Version]
- Hancu, V.; Comaneanu, R.M.; Coman, C.; Filipescu, A.G.; Ghergic, D.L.; Cotrut, M.C. In Vitro Studies Regarding the Corro-sion Resistance of NiCr and CoCr Types Dental Alloys. Rev.Chim. 2014, 65, 706–709. [Google Scholar]
- Wen, C. Structural Biomaterials: Properties, Characteristics, and Selection; Woodhead Publishing: Sawston, UK, 2021; pp. 33–59, 103–122. [Google Scholar]
Material Name | Manufacturing Technique | Codification | Chemical Composition [wt. %] | |||||
---|---|---|---|---|---|---|---|---|
Co | Cr | Mo | Si | W | Impurities | |||
Biomate-K Special (Simex, Italy) | Casting | CCc | 60.5 | 31.5 | 5.0 | 2.5 | - | - |
Starbond Esy Disc (Scheftner Dental Alloys, Germany) | Milling | CCm | 61.0 | 27.5 | - | 1.6 | 8.5 | <1.0% (C, Mn, Fe) |
CoCr Alloy | Chemical Composition (%wt) | ||||||
---|---|---|---|---|---|---|---|
Co | Cr | Mo | O | Si | W | TOTAL | |
CCc | 58.12 | 27.94 | 7.08 | 5.08 | 1.78 | 0.00 | 100.00 |
CCm | 59.66 | 25.22 | 0.00 | 4.68 | 3.03 | 7.41 | 100.00 |
Substance | Quantity/L (g) |
---|---|
Na2HPO4 | 0.19 |
NaCl | 0.7 |
KSCN | 0.33 |
KH2PO4 | 0.26 |
NaHCO3 | 1.5 |
Ureea | 1.3 |
Material | Artificial Saliva pH Value | Codification |
---|---|---|
CCc (Cast alloy) | 3 | CCc-3 |
5.7 | CCc-5 | |
7.6 | CCc-7 | |
CCm (Milled alloy) | 3 | CCm-3 |
5.7 | CCm-5 | |
7.6 | CCm-7 |
Sample | Eoc (mV) | Ecorr (mV) | icorr (nA/cm2) | βc (mV) | βa (mV) | Rp (kΩ × cm2) | CR (μm/an) |
---|---|---|---|---|---|---|---|
CCc-3 | −21 | −70 | 45.155 | 178.84 | 170.94 | 841.56 | 0.481 |
CCc-5 | 9 | −131 | 9.485 | 104.3 | 163.83 | 2921.24 | 0.101 |
CCc-7 | −237 | −311 | 9.098 | 97.34 | 200.28 | 3130.56 | 0.096 |
CCm-3 | 20 | −35 | 23.805 | 132.67 | 152.57 | 1296.15 | 0.229 |
CCm-5 | 112 | 54 | 9.241 | 123.32 | 190.56 | 3524.57 | 0.089 |
CCm-7 | −200 | −278 | 8.083 | 96.58 | 242.50 | 3715.58 | 0.084 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bechir, F.; Bataga, S.M.; Ungureanu, E.; Vranceanu, D.M.; Pacurar, M.; Bechir, E.S.; Cotrut, C.M. Experimental Study Regarding the Behavior at Different pH of Two Types of Co-Cr Alloys Used for Prosthetic Restorations. Materials 2021, 14, 4635. https://doi.org/10.3390/ma14164635
Bechir F, Bataga SM, Ungureanu E, Vranceanu DM, Pacurar M, Bechir ES, Cotrut CM. Experimental Study Regarding the Behavior at Different pH of Two Types of Co-Cr Alloys Used for Prosthetic Restorations. Materials. 2021; 14(16):4635. https://doi.org/10.3390/ma14164635
Chicago/Turabian StyleBechir, Farah, Simona Maria Bataga, Elena Ungureanu, Diana Maria Vranceanu, Mariana Pacurar, Edwin Sever Bechir, and Cosmin Mihai Cotrut. 2021. "Experimental Study Regarding the Behavior at Different pH of Two Types of Co-Cr Alloys Used for Prosthetic Restorations" Materials 14, no. 16: 4635. https://doi.org/10.3390/ma14164635
APA StyleBechir, F., Bataga, S. M., Ungureanu, E., Vranceanu, D. M., Pacurar, M., Bechir, E. S., & Cotrut, C. M. (2021). Experimental Study Regarding the Behavior at Different pH of Two Types of Co-Cr Alloys Used for Prosthetic Restorations. Materials, 14(16), 4635. https://doi.org/10.3390/ma14164635