Composite Carbon Foams as an Alternative to the Conventional Biomass-Derived Activated Carbon in Catalytic Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Morphology
3.2. Elemental Analysis
3.3. Textural Properties
3.4. Thermal Stability
3.5. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inagaki, M.; Qiu, J.; Guo, Q. Carbon foam: Preparation and application. Carbon N. Y. 2015, 87, 128–152. [Google Scholar] [CrossRef]
- Qian, X.; Ren, M.; Yue, D.; Zhu, Y.; Han, Y.; Bian, Z.; Zhao, Y. Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. Appl. Catal. B Environ. 2017, 212, 1–6. [Google Scholar] [CrossRef]
- Chen, S.; He, G.; Hu, H.; Jin, S.; Zhou, Y.; He, Y.; He, S.; Zhao, F.; Hou, H. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy Environ. Sci. 2013, 6, 2435–2439. [Google Scholar] [CrossRef]
- Saini, V.K.; Pinto, M.L.; Pires, J. Synthesis and adsorption properties of micro/mesoporous carbon-foams prepared from foam-shaped sacrificial templates. Mater. Chem. Phys. 2013, 138, 877–885. [Google Scholar] [CrossRef]
- Bähr, A.; Diedenhoven, J.; Tüysüz, H. Cl2 Adsorption and Desorption over Ordered Mesoporous Carbon Materials as an Indicator for Catalytic Phosgene Formation. Chem. Ing. Tech. 2020, 92, 1508–1513. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, H.; Zhou, Y.; Qiao, H.; Gurung, A.; Naderi, R.; Elbohy, H.; Smirnova, A.L.; Lu, H.; Chen, S.; et al. Binder Free Hierarchical Mesoporous Carbon Foam for High Performance Lithium Ion Battery. Sci. Rep. 2017, 7, 1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narasimman, R.; Vijayan, S.; Prabhakaran, K. Carbon foam with microporous cell wall and strut for CO2 capture. RSC Adv. 2014, 4, 578–582. [Google Scholar] [CrossRef]
- Udayakumar, M.; El Mrabate, B.; Koós, T.; Szemmelveisz, K.; Kristály, F.; Leskó, M.; Filep, Á.; Géber, R.; Schabikowski, M.; Baumli, P.; et al. Synthesis of activated carbon foams with high specific surface area using polyurethane elastomer templates for effective removal of methylene blue. Arab. J. Chem. 2021, 14, 103214. [Google Scholar] [CrossRef]
- Lee, C.G.; Jeon, J.W.; Hwang, M.J.; Ahn, K.H.; Park, C.; Choi, J.W.; Lee, S.H. Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin. Chemosphere 2015, 130, 59–65. [Google Scholar] [CrossRef]
- Ngoc Pham, T. Three-Dimensional Structured Carbon Foam: Synthesis and Applications. Ph.D. Thesis, Umeå University, Umeå, Sweden, 2016. [Google Scholar]
- Pham, T.N.; Samikannu, A.; Kukkola, J.; Rautio, A.R.; Pitkänen, O.; Dombovari, A.; Lorite, G.S.; Sipola, T.; Toth, G.; Mohl, M.; et al. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: From environmental to electrical applications. Sci. Rep. 2014, 4, 6933. [Google Scholar] [CrossRef]
- Pham, T.N.; Samikannu, A.; Rautio, A.R.; Juhasz, K.L.; Konya, Z.; Wärnå, J.; Kordas, K.; Mikkola, J.P. Catalytic Hydrogenation of d-Xylose Over Ru Decorated Carbon Foam Catalyst in a SpinChem® Rotating Bed Reactor. Top. Catal. 2016, 59, 1165–1177. [Google Scholar] [CrossRef] [Green Version]
- Bukhanko, N.; Schwarz, C.; Samikannu, A.; Pham, T.N.; Siljebo, W.; Wärnå, J.; Shchukarev, A.; Rautio, A.R.; Kordás, K.; Mikkola, J.P. Gas phase synthesis of isopropyl chloride from isopropanol and HCl over alumina and flexible 3-D carbon foam supported catalysts. Appl. Catal. A Gen. 2017, 542, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Prekob, Á.; Udayakumar, M.; Karacs, G.; Kristály, F.; Muránszky, G.; Leskó, A.K.; Németh, Z.; Viskolcz, B.; Vanyorek, L. Development of Highly Efficient, Glassy Carbon Foam Supported, Palladium Catalysts for Hydrogenation of Nitrobenzene. Nanomaterials 2021, 11, 1172. [Google Scholar] [CrossRef]
- Mitchell, C.J.; Van Der Borden, W.; Van Der Velde, K.; Smit, M.; Scheringa, R.; Ahrika, K.; Jones, D.H. Selection of carbon catalysts for the industrial manufacture of phosgene. Catal. Sci. Technol. 2012, 2, 2109–2115. [Google Scholar] [CrossRef]
- Ryan, T.A.; Seddon, E.A.; Seddon, K.R.; Ryan, C. Phosgene: And Related Carbonyl Halides; Elsevier Science B.V.: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Rossi, G.E.; Winfield, J.M.; Meyer, N.; Jones, D.H.; Carr, R.H.; Lennon, D. Phosgene synthesis catalysis: The influence of small quantities of bromine in the chlorine feedstream. Ind. Eng. Chem. Res. 2021, 60, 3363–3373. [Google Scholar] [CrossRef]
- Potter, C.; Baron, S. Kinetics of the Catalytic Formation of Phosgene. Chem. Eng. Prog. 1951, 47, 473–515. [Google Scholar]
- Abrams, L.; Cicha, W.V.; Manzer, L.E.; Subramoney, S. A new catalyst for an old process driven by environmental issues. Stud. Surf. Sci. Catal. 2000, 130, 455–460. [Google Scholar] [CrossRef]
- Kunisi, N.; Murai, N.; Kusama, H. Process for Producing Phosgene. European Patent Application No. EP0796819B1, 15 March 2000. [Google Scholar]
- Ajmera, S.K.; Losey, M.W.; Jensen, K.F.; Schmidt, M.A. Microfabricated packed-bed reactor for phosgene synthesis. AIChE J. 2001, 47, 1639–1647. [Google Scholar] [CrossRef]
- Gupta, N.K.; Pashigreva, A.; Pidko, E.A.; Hensen, E.J.M.; Mleczko, L.; Roggan, S.; Ember, E.E.; Lercher, J.A. Bent Carbon Surface Moieties as Active Sites on Carbon Catalysts for Phosgene Synthesis. Angew. Chem. Int. Ed. 2016, 55, 1728–1732. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.K.; Peng, B.; Haller, G.L.; Ember, E.E.; Lercher, J.A. Nitrogen Modified Carbon Nano-Materials as Stable Catalysts for Phosgene Synthesis. ACS Catal. 2016, 6, 5843–5855. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Gilliam, O.R.; Johnson, C.M.; Gordy, W. Microwave spectroscopy in the region from two to three millimeters. Phys. Rev. 1950, 78, 140–144. [Google Scholar] [CrossRef]
- Chen, B.; Luo, W.; Yao, Y.; Shao, L.; Wang, L.; Zhang, H.; Hua, W. Catalyst for Preparing Phosgene and Method for Preparing Phosgene Using the Same. U.S. Patent Application No. US9399582B2, 26 July 2016. [Google Scholar]
- Desai, S.; Njuguna, J. Thermal properties of natural graphite flake composites. Int. Rev. Mech. Eng. 2012, 6, 923–926. [Google Scholar]
- Chai, Y.; Yang, X.H.; Zhao, M.; Chen, Z.Y.; Meng, X.Z.; Jin, L.W.; Zhang, Q.L.; Hu, W.J. Study of Microstructure-Based Effective Thermal Conductivity of Graphite Foam. J. Heat Transf. 2017, 139, 052004. [Google Scholar] [CrossRef]
- Yu, L.; Feng, Z.; Fan, Z.; Kong, Q.; Xu, L. The preparation and properties of novel structural carbon foams derived from different mesophase pitches. In Proceedings of the 5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry, Kona, HI, USA, 22−27 June 2014. [Google Scholar]
- The Effect of Interstitial Air on the Effective K of Powders. Available online: https://ctherm.com/resources/newsroom/blog/thermal-conductivity-interstitial-powders/ (accessed on 29 June 2021).
Sample | BET Surface Area (SBET) | Micropore Area | External Surface Area | Vm a | VT b | Pore Size |
---|---|---|---|---|---|---|
(m2/g) | (m2/g) | (m2/g) | (cm3/g) | (cm3/g) | (nm) | |
ACF | 2013 | 617 | 1396 | 0.26 | 1.00 | 2.0 |
ACF-G10 | 769 | 690 | 79 | 0.32 | 0.36 | 1.89 |
ACF-G20 | 678 | 601 | 77 | 0.28 | 0.32 | 1.89 |
ACF-G30 | 554 | 502 | 52 | 0.23 | 0.26 | 1.90 |
AC-X | 552 | 456 | 96 | 0.21 | 0.27 | 1.98 |
Sample | Thermal Conductivity (W/mK) | |
---|---|---|
25 °C | 180 °C | |
Graphite | 0.11 | 0.12 |
ACF | 0.08 | 0.06 |
ACF-G10 | 0.08 | 0.06 |
ACF-G20 | 0.09 | 0.07 |
ACF-G30 | 0.09 | 0.07 |
AC-X | 0.11 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udayakumar, M.; Boros, R.Z.; Farkas, L.; Simon, A.; Koós, T.; Leskó, M.; Leskó, A.K.; Hernadi, K.; Németh, Z. Composite Carbon Foams as an Alternative to the Conventional Biomass-Derived Activated Carbon in Catalytic Application. Materials 2021, 14, 4540. https://doi.org/10.3390/ma14164540
Udayakumar M, Boros RZ, Farkas L, Simon A, Koós T, Leskó M, Leskó AK, Hernadi K, Németh Z. Composite Carbon Foams as an Alternative to the Conventional Biomass-Derived Activated Carbon in Catalytic Application. Materials. 2021; 14(16):4540. https://doi.org/10.3390/ma14164540
Chicago/Turabian StyleUdayakumar, Mahitha, Renáta Zsanett Boros, László Farkas, Andrea Simon, Tamás Koós, Máté Leskó, Anett Katalin Leskó, Klara Hernadi, and Zoltán Németh. 2021. "Composite Carbon Foams as an Alternative to the Conventional Biomass-Derived Activated Carbon in Catalytic Application" Materials 14, no. 16: 4540. https://doi.org/10.3390/ma14164540
APA StyleUdayakumar, M., Boros, R. Z., Farkas, L., Simon, A., Koós, T., Leskó, M., Leskó, A. K., Hernadi, K., & Németh, Z. (2021). Composite Carbon Foams as an Alternative to the Conventional Biomass-Derived Activated Carbon in Catalytic Application. Materials, 14(16), 4540. https://doi.org/10.3390/ma14164540