The Potentials of Egyptian and Indian Granites for Protection of Ionizing Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Sample Characterization
2.3. Gamma Rays Attenuation Measurements
2.4. Shielding Parameter Calculations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, M.; Zhou, S.; Xue, X.; Feng, X.; Sayyed, M.I.; Khandaker, M.U.; Bradley, D.A. The potential use of boron containing resources for protection against nuclear radiation. Radiat. Phys. Chem. 2021, 188, 109601. [Google Scholar] [CrossRef]
- Dong, M.; Xue, X.; Yang, H.; Liu, D.; Wang, C.; Li, Z. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material. J. Hazard. Mater. 2016, 318, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, M.I.; Ali, A.; Zaid, M.H.M.; Olukotun, S.F.; Khandaker, M.U.; Daria, I.T.; Bradley, D.A. ; Olukotun, S.F. ; Khandaker, M.U.; Daria, I.T.; Bradley, D.A. Radiation shielding and mechanical properties of Bi2O3–Na2O–TiO2–ZnO–TeO2 glass system. Radiat. Phys. Chem. 2021, 186, 109556. [Google Scholar]
- Sayyed, M.I.; Al-Hadeethi, Y.; AlShammari, M.M.; Al-Heniti, S.H.A.; Rammah, S.Y. Physical, optical and gamma radiation shielding competence of newly borotellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceram. Int. 2021, 47, 611–618. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Mhareb, M.H.A.; Alajerami, Y.S.M.; Mahmoud, K.A.; Imheidat, M.A.; Alshahri, F.; Alqahtani, M.; Al-Abdullah, T. Optical and radiation shielding features for a new series of borate glass samples. Optik 2021, 239, 166790. [Google Scholar] [CrossRef]
- Alaylar, B.; Aygün, B.; Turhan, K.; Karadayi, G.; Sakar, E.; Singh, V.P.; Sayyed, M.I.; Pelit, E.; Karabulut, A.; Güllüce, M.; et al. Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential. Radiat. Phys. Chem. 2021, 184, 109471. [Google Scholar] [CrossRef]
- Yasmin, S.; Barua, B.S.; Khandaker, M.U.; Rashid, M.A.; Bradley, D.A.; Olatunji, M.A.; Kamal, M. Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 2018, 9, 541–549. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Jecong, J.F.M.; Hila, F.C.; Balderas, C.V.; Alhuthali, A.M.S.; Guillermo, N.R.D.; Al-Hadeethi, Y. Radiation shielding characteristics of selected ceramics using the EPICS2017 library. Ceram. Int. 2021, 47, 13181–13186. [Google Scholar] [CrossRef]
- Yasmin, S.; Rozaila, Z.S.; Khandaker, M.U.; Barua, B.S.; Chowdhury, F.U.Z.; Rashid, M.A.; Bradley, D.A. The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings. Radiat. Eff. Defects Solids 2018, 173, 657–672. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Almuqrin, A.H.; Kurtulus, R.; Javier-Hila, A.M.V.; Kaky, K.; Kavas, T. X-ray shielding characteristics of P2O5–Nb2O5 glass doped with Bi2O3 by using EPICS2017 and Phy-X/PSD. Appl. Phys. A 2021, 127, 243. [Google Scholar] [CrossRef]
- Abouhaswa, A.S.; Kavaz, E. A novel B2O3-Na2O-BaO-HgO glass system: Synthesis, physical, optical and nuclear shielding features. Ceram. Int. 2020, 46, 16166–16177. [Google Scholar] [CrossRef]
- Mhareb, M.H.A. Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A. 2020, 126, 71. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Lacomme, K.A.M.E.; AlShammari, M.M.; Dwaikat, N.; Alajerami, Y.S.M.; Alqahtani, M.; El-bashir, B.O.; Mhareb, M.H.A. Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications, Eur. Phys. J. Plus 2021, 136, 108. [Google Scholar] [CrossRef]
- Kavaz, E.; Ghanim, E.H.; Abouhaswa, A.S. Optical, structural and nuclear radiation security properties of newly fabricated V2O5-SrO-PbO glass system. J. Non Cryst. Solids 2020, 538, 120045. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Mahmoud, K.A.; Tashlykov, O.L.; Khandaker, M.U.; Faruque, M.R.I. Enhancement of the Shielding Capability of Soda–Lime Glasses with Sb2O3 Dopant: A Potential Material for Radiation Safety in Nuclear Installations. Appl. Sci. 2021, 11, 326. [Google Scholar] [CrossRef]
- Obaid, S.S.; Gaikwad, D.K.; Pawar, P.P. Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 2018, 144, 356–360. [Google Scholar] [CrossRef]
- Gökçe, H.S.; Yalçınkaya, Ç.; Tuyan, M. Optimization of reactive powder concrete by means of barite aggregate for neutrons and gamma rays. Constr. Build. Mater. 2018, 189, 470–477. [Google Scholar] [CrossRef]
- Sirin, M. The effect of titanium (Ti) additive on radiation shielding efficiency of Al25Zn alloy. Prog. Nucl. Energy 2020, 128, 103470. [Google Scholar] [CrossRef]
- Shamsan, S.; Obaid, S.S.; Sayyed, M.; Gaikwad, D.; Pawar, P. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 2018, 148, 86–94. [Google Scholar] [CrossRef]
- Huang, B.; Lu, W. Experimental investigation of the uniaxial compressive behavior of thin building granite. Constr. Build. Mater. 2021, 267, 120967. [Google Scholar] [CrossRef]
- Mavi, B. Experimental investigation of c-ray attenuation coefficients for granite. Ann. Nucl. Energy 2012, 44, 22–25. [Google Scholar] [CrossRef]
- Ozyurt, O.; Altinsoy, N.; Karaaslan, Ş.İ.; Bora, A.; Buyuk, B.; Erk, İ. Calculation of gamma ray attenuation coefficients of some granite samples using a Monte Carlo simulation code. Radiat. Phys. Chem. 2018, 144, 271–275. [Google Scholar] [CrossRef]
- Nelson, G.; Reilly, D. Gamma-Ray Interactions with Matter. In Passive Nondestructive Analysis of Nuclear Materials; NUREG/CR-5550; LA-UR-90-732; Los Alamos National Laboratory: Los Angeles, CA, USA, 1991; pp. 27–42. [Google Scholar]
- William, D.; William, E.; Vance, D. Radiochemistry and Nuclear Methods of Analysis; John Wiley and Sons: New York, NY, USA, 1991; pp. 162–175. [Google Scholar]
- Abbas, M.I.; Elsafi, M. NaI cubic detector full-energy peak efficiency, including coincidence and self-absorption corrections for rectangular sources using analytical method. J. Radioanal. Nucl. Chem. 2021, 327, 251–258. [Google Scholar] [CrossRef]
- Badawi, M.S.; Noureddine, S.; Kopatch, Y.N.; Abbas, M.I.; Ruskov, I.N.; Grozdanov, D.N.; Thabet, A.A.; Fedorov, N.A.; Gouda, M.M.; Hramco, C. Characterization of the Efficiency of a Cubic NaI Detector with Rectangular Cavity for Axially Positioned Sources. J. Insturm. 2020, 15, P02013. [Google Scholar] [CrossRef]
- Abbas, M.I.; Badawi, M.S.; Thabet, A.A.; Kopatch, Y.N.; Ruskov, I.N.; Grozdanov, D.N.; Noureddine, S.; Fedorov, N.A.; Gouda, M.M.; Hramco, C.; et al. Efficiency of a cubic NaI(Tl) detector with rectangular cavity using standard radioactive point sources placed at non-axial position. Appl. Radiat. Isot. 2020, 163, 109139. [Google Scholar] [CrossRef] [PubMed]
- Elsafi, M.; Alzahrani, J.S.; Abbas, M.I.; Gouda, M.M.; Thabet, A.A.; Badawi, M.S.; El-Khatib, A.M. Geant4 Tracks of NaI Cubic Detector Peak Efficiency, Including Coincidence Summing Correction for Rectangular Sources. Nucl. Sci. Eng. 2021. [Google Scholar] [CrossRef]
- Elsafi, M.; El-Nahal, M.A.; Sayyed, M.I.; Saleh, I.H.; Abbas, M.I. Effect of bulk and nanoparticle Bi2O3 on attenuation capability of radiation shielding glass. Ceram. Int. 2021, in press. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Olarinoye, O.I.; Elsafi, M. Assessment of gamma-radiation attenuation characteristics of Bi 2 O 3–B 2 O 3–SiO 2–Na 2 O glasses using Geant4 simulation code. Eur. Phys. J. Plus 2021, 136, 535. [Google Scholar] [CrossRef]
- Gerward, L.; Guilbert, N.; Jensen, K.B.; Levring, H. X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 2001, 60, 23–24. [Google Scholar] [CrossRef]
- Al-Hamarneh, I.F. Investigation of gamma-ray shielding effectiveness of natural marble used for external wall cladding of buildings in Riyadh, Saudi Arabia. Results Phys. 2017, 7, 1792–1798. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Akman, F.; Kumar, A.; Kaçal, M. Evaluation of radioprotection properties of some selected ceramic samples. Results Phys. 2018, 11, 1100–1104. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Akman, F.; Turan, V.; Araz, A. Evaluation of radiation absorption capacity of some soil samples. Radiochim. Acta 2019, 107, 83–93. [Google Scholar] [CrossRef]
Molecular Composition | Average Mass % | ||
---|---|---|---|
Granite Gandola G.G ρ = 2.83 g/cm3 | White Halayeb G.WH ρ = 2.70 g/cm3 | Red Aswani G.RA ρ = 2.85 g/cm3 | |
Al2O3 | 12.86 | 14.99 | 14.61 |
SiO2 | 77.92 | 74.19 | 77.54 |
K2O | 4.57 | - | 4.70 |
CaO | 3.26 | 4.22 | 3.03 |
TiO2 | 0.36 | 0.24 | - |
Cr2O3 | 0.07 | - | - |
MnO | 0.06 | - | - |
CuO | 0.10 | - | - |
Na2O | - | 4.21 | - |
FeO | - | 1.55 | - |
PTB Nuclide | Energy keV | Emission Probability | Activity kBq | Reference Date | Uncertainty |
---|---|---|---|---|---|
Am-241 | 59.52 | 35.90 | 259.0 | 1.June 2009 | ±2.6 |
Cs-137 | 661.66 | 34.10 | 385.0 | ±4.0 | |
Eu-152 | 121.78 | 28.40 | 290.0 | ±4.0 | |
244.69 | 26.60 | ||||
344.28 | 14.00 | ||||
964.13 | 20.87 | ||||
1408.10 | 85.21 | ||||
Co-60 | 1173.23 | 99.90 | 212.1 | ±1.5 | |
1332.50 | 99.98 |
E (MeV) | G.G | G.WH | G.RA | ||||||
---|---|---|---|---|---|---|---|---|---|
EXP | XCOM | % Dev. | EXP | XCOM | % Dev. | EXP | XCOM | % Dev. | |
0.0595 | 0.2625 | 0.2735 | −4.02 | 0.2627 | 0.2725 | −3.60 | 0.2612 | 0.2718 | −3.90 |
0.1218 | 0.1519 | 0.1539 | −1.30 | 0.1507 | 0.1539 | −2.08 | 0.1481 | 0.1545 | −4.14 |
0.3443 | 0.10229 | 0.1008 | 1.48 | 0.102 | 0.1009 | 1.09 | 0.1032 | 0.1015 | 1.67 |
0.6617 | 0.0742 | 0.0764 | −2.88 | 0.0766 | 0.0765 | 0.13 | 0.0753 | 0.0769 | −2.08 |
0.7789 | 0.0724 | 0.0709 | 2.12 | 0.0731 | 0.071 | 2.96 | 0.073 | 0.0714 | 2.24 |
0.9641 | 0.0662 | 0.0641 | 3.28 | 0.0632 | 0.0641 | −1.40 | 0.0621 | 0.0645 | −3.72 |
1.086 | 0.0622 | 0.0604 | 2.98 | 0.0607 | 0.0605 | 0.33 | 0.0618 | 0.0608 | 1.64 |
1.112 | 0.0606 | 0.0597 | 1.51 | 0.0598 | 0.0598 | 0.00 | 0.0619 | 0.0601 | 3.00 |
1.173 | 0.0594 | 0.0581 | 2.24 | 0.0577 | 0.0582 | −0.86 | 0.0604 | 0.0585 | 3.25 |
1.333 | 0.055 | 0.0545 | 0.92 | 0.0553 | 0.0545 | 1.47 | 0.0561 | 0.0548 | 2.37 |
1.408 | 0.054 | 0.0529 | 2.08 | 0.0523 | 0.053 | −1.32 | 0.0542 | 0.0533 | 1.69 |
E (MeV) | Zeff | Zeq | ||||
---|---|---|---|---|---|---|
G.G | G.WH | G.RA | G.G | G.WH | G.RA | |
0.015 | 13.64 | 13.68 | 13.45 | 12.31 | 12.23 | 12.21 |
0.02 | 13.55 | 13.60 | 13.35 | 12.40 | 12.32 | 12.28 |
0.03 | 13.09 | 13.13 | 12.90 | 12.49 | 12.43 | 12.37 |
0.04 | 12.47 | 12.48 | 12.31 | 12.54 | 12.50 | 12.42 |
0.05 | 11.89 | 11.88 | 11.77 | 12.58 | 12.54 | 12.46 |
0.06 | 11.45 | 11.42 | 11.35 | 12.61 | 12.58 | 12.48 |
0.08 | 10.92 | 10.86 | 10.85 | 12.65 | 12.63 | 12.52 |
0.10 | 10.66 | 10.59 | 10.61 | 12.68 | 12.66 | 12.54 |
0.15 | 10.42 | 10.34 | 10.39 | 12.72 | 12.72 | 12.58 |
0.20 | 10.35 | 10.27 | 10.32 | 12.75 | 12.75 | 12.60 |
0.30 | 10.30 | 10.22 | 10.28 | 12.79 | 12.80 | 12.63 |
0.40 | 10.29 | 10.21 | 10.27 | 12.80 | 12.82 | 12.65 |
0.50 | 10.29 | 10.20 | 10.26 | 12.81 | 12.83 | 12.65 |
0.60 | 10.28 | 10.20 | 10.26 | 12.82 | 12.84 | 12.66 |
0.80 | 10.28 | 10.20 | 10.26 | 12.82 | 12.84 | 12.66 |
1.00 | 10.28 | 10.19 | 10.26 | 12.82 | 12.84 | 12.66 |
1.50 | 10.28 | 10.20 | 10.26 | 11.65 | 11.55 | 11.57 |
2.00 | 10.29 | 10.20 | 10.27 | 11.39 | 11.27 | 11.33 |
3.00 | 10.32 | 10.23 | 10.30 | 11.33 | 11.21 | 11.27 |
4.00 | 10.36 | 10.27 | 10.33 | 11.30 | 11.18 | 11.25 |
5.00 | 10.40 | 10.31 | 10.37 | 11.29 | 11.17 | 11.24 |
6.00 | 10.44 | 10.34 | 10.41 | 11.29 | 11.17 | 11.24 |
8.00 | 10.51 | 10.41 | 10.48 | 11.28 | 11.16 | 11.23 |
10.00 | 10.57 | 10.47 | 10.54 | 11.28 | 11.15 | 11.23 |
15.00 | 10.69 | 10.59 | 10.66 | 11.28 | 11.15 | 11.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsafi, M.; Alrashedi, M.F.; Sayyed, M.I.; Al-Hamarneh, I.F.; El-Nahal, M.A.; El-Khatib, M.; Khandaker, M.U.; Osman, H.; Askary, A.E. The Potentials of Egyptian and Indian Granites for Protection of Ionizing Radiation. Materials 2021, 14, 3928. https://doi.org/10.3390/ma14143928
Elsafi M, Alrashedi MF, Sayyed MI, Al-Hamarneh IF, El-Nahal MA, El-Khatib M, Khandaker MU, Osman H, Askary AE. The Potentials of Egyptian and Indian Granites for Protection of Ionizing Radiation. Materials. 2021; 14(14):3928. https://doi.org/10.3390/ma14143928
Chicago/Turabian StyleElsafi, Mohamed, M. F. Alrashedi, M. I. Sayyed, Ibrahim F. Al-Hamarneh, M. A. El-Nahal, Mostafa El-Khatib, Mayeen Uddin Khandaker, Hamid Osman, and Ahmad El Askary. 2021. "The Potentials of Egyptian and Indian Granites for Protection of Ionizing Radiation" Materials 14, no. 14: 3928. https://doi.org/10.3390/ma14143928
APA StyleElsafi, M., Alrashedi, M. F., Sayyed, M. I., Al-Hamarneh, I. F., El-Nahal, M. A., El-Khatib, M., Khandaker, M. U., Osman, H., & Askary, A. E. (2021). The Potentials of Egyptian and Indian Granites for Protection of Ionizing Radiation. Materials, 14(14), 3928. https://doi.org/10.3390/ma14143928