Morpho-Chemical Observations of Human Deciduous Teeth Enamel in Response to Biomimetic Toothpastes Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Variable Pressure Scanning Electron Microscopy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Walsh, T.; Worthington, H.V.; Glenny, A.M.; Marinho, V.C.C.; Jeroncic, A. Fluoride Toothpastes of Different Concentrations for Preventing Dental Caries. Cochrane Database Syst. Rev. 2019, 3, CD007868. [Google Scholar] [CrossRef] [PubMed]
- De Menezes Oliveira, M.A.; Torres, C.P.; Gomes-Silva, J.M.; Chinelatti, M.A.; De Menezes, F.C.; Palma-Dibb, R.G.; Borsatto, M.C. Microstructure and Mineral Composition of Dental Enamel of Permanent and Deciduous Teeth. Microsc. Res. Tech. 2010, 73, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, D.K. Structural Variations in the Surface Zone of Human Tooth Enamel Observed by Scanning Electron Microscopy. Arch. Oral Biol. 1982, 27, 383–392. [Google Scholar] [CrossRef]
- Whelton, H.P.; Spencer, A.J.; Do, L.G.M.; Rugg-Gunn, A.J. Fluoride Revolution and Dental Caries: Evolution of Policies for Global Use. J. Dent. Res. 2019, 98, 837–846. [Google Scholar] [CrossRef]
- Lalumandier, J.A.; Rozier, R.G. The Prevalence and Risk Factors of Fluorosis among Patients in a Pediatric Dental Practice. Pediatr. Dent. 1995, 17, 19–25. [Google Scholar] [PubMed]
- Guentsch, A.; Fahmy, M.D.; Wehrle, C.; Nietzsche, S.; Popp, J.; Watts, D.C.; Kranz, S.; Krafft, C.; Sigusch, B.W. Effect of Biomimetic Mineralization on Enamel and Dentin: A Raman and EDX Analysis. Dent. Mater. 2019, 35, 1300–1307. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Taddei, P.; Siboni, F.; Modena, E.; De Stefano, E.D.; Prati, C. Biomimetic Remineralization of Human Dentin Using Promising Innovative Calcium-silicate Hybrid “Smart” Materials. Dent. Mater. 2011, 27, 1055–1069. [Google Scholar] [CrossRef]
- Bijle, M.N.A.; Ekambaram, M.; Lo, E.C.; Yiu, C.K.Y. The Combined Enamel Remineralization Potential of Arginine and Fluoride Toothpaste. J. Dent. 2018, 76, 75–82. [Google Scholar] [CrossRef]
- Austin, R.S.; Stenhagen, K.S.; Hove, L.H.; Dunne, S.; Moazzez, R.; Bartlett, D.W.; Tveit, A.B. A Qualitative and Quantitative Investigation into the Effect of Fluoride Formulations on Enamel Erosion and Erosion-abrasion In Vitro. J. Dent. 2011, 39, 648–655. [Google Scholar] [CrossRef]
- Shen, P.; Manton, D.J.; Cochrane, N.J.; Walker, G.D.; Yuan, Y.; Reynolds, C.; Reynolds, E.C. Effect of Added Calcium Phosphate on Enamel Remineralization by Fluoride in a Randomized Controlled in Situ Trial. J. Dent. 2011, 39, 518–525. [Google Scholar] [CrossRef]
- Bossù, M.; Saccucci, M.; Salucci, A.; Di Giorgio, G.; Bruni, E.; Uccelletti, D.; Sarto, M.S.; Familiari, G.; Relucenti, M.; Polimeni, A. Enamel Remineralization and Repair Results of Biomimetic Hydroxyapatite Toothpaste on Deciduous Teeth: An Effective Option to Fluoride Toothpaste. J. Nanobiotechnol. 2019, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Bearzotti, A.; Papa, P.; Macagnano, A.; Zampetti, E.; Venditti, I.; Fioravanti, R.; Fontana, L.; Matassa, R.; Familiari, G.; Fratoddi, I. Environmental Hg Vapours Absorption and Detection by Using Functionalized Gold Nanoparticles Network. J. Environ. Chem. Eng. 2018, 6, 4706–4713. [Google Scholar] [CrossRef]
- Delfini, A.; Santoni, F.; Bisegna, F.; Piergentili, F.; Pastore, R.; Vricella, A.; Albano, M.; Familiari, G.; Battaglione, E.; Matassa, R.; et al. Evaluation of Atomic Oxygen Effects on Nano-coated Carbon-carbon Structures for Re-entry Applications. Acta Astronaut. 2019, 161, 276–282. [Google Scholar] [CrossRef]
- Toschi, F.; Orlanducci, S.; Guglielmotti, V.; Cianchetta, I.; Magni, C.; Terranova, M.L.; Pasquali, M.; Tamburri, E.; Matassa, R. Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor. Chem. Phys. Lett. 2012, 539, 94–101. [Google Scholar]
- Simmer, J.P.; Fincham, A.G. Molecular Mechanisms of Dental Enamel Formation. Crit. Rev. Oral Biol. Med. 1995, 6, 84–108. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Q.; Moradian-Oldak, J. Amelogenin and Enamel Biomimetics. J. Mater. Chem. B 2015, 3, 3112. [Google Scholar] [CrossRef]
- Matassa, R.; Sadun, C.; D’Ilario, L.; Martinelli, A.; Caminiti, R. Supramolecular Organization of Toluidine Blue Dye in Solid Amorphous Phases. J. Phys. Chem. B 2007, 111, 1994–1999. [Google Scholar] [CrossRef]
- Fosse, G. A quantitative analysis of the numerical density and the distributional pattern of prisms and ameloblasts in dental enamel and tooth germs. III. The calculation of prism diameters and numbers of prisms per unit area in dental enamel. Acta Odontol. Scand. 1968, 26, 315–336. [Google Scholar] [CrossRef]
- Mortimer, K.V. The Relationship of Deciduous Enamel Structure of Dental Disease. Caries Res. 1970, 4, 206–223. [Google Scholar] [CrossRef]
- Beniash, E.; Metzler, R.A.; Lam, R.S.; Gilbert, P.U. Transient Amorphous Calcium Phosphate in Forming Enamel. J. Struct. Biol. 2009, 166, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Beniash, E.; Stifler, C.A.; Sun, C.Y.; Jung, G.S.; Qin, Z.; Buehler, M.J.; Gilbert, P. The Hidden Structure of Human Enamel. Nat. Commun. 2019, 10, 4383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaichick, V.; Zaichick, S. The Effect of Age and Gender on Calcium, Phosphorus, and Calcium-Phosphorus Ratio in the Roots of Permanent Teeth. J. Dent. 2014, 2, 78–89. [Google Scholar] [CrossRef]
- Pietak, A.M.; Reid, J.W.; Stott, M.J.; Sayer, M. Silicon Substitution in the Calcium Phosphate Bioceramics. Biomaterials 2007, 28, 4023–4032. [Google Scholar] [CrossRef] [PubMed]
- Matassa, R.; Carbone, M.; Laceri, R.; Purrello, R.; Caminiti, R. Supramolecular Structure of Extrinsically Chiral Porphyrin Hetero-Assemblies and Achiral Analogues. Adv. Mater. 2007, 19, 3961–3967. [Google Scholar] [CrossRef] [Green Version]
- Peetsch, A.; Epple, M. Characterization of the solid components of three desensitizing toothpastes and a mouth wash. Mater. Werkst. 2011, 42, 131–135. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Lin, H.P.; Chang, H.H.; Cheng, Y.W.; Tang, H.Y.; Yen, W.C.; Lin, P.Y.; Chang, K.W.; Lin, C.P. A Mesoporous Silica Biomaterial for Dental Biomimetic Crystallization. ACS Nano 2014, 8, 12502–12513. [Google Scholar] [CrossRef] [PubMed]
- Reis, S.T.; Koenigstein, M.; Fan, L.; Chen, G.; Pavi´, L.; Moguš-Milankovi´, A. The Effects of Silica on the Properties of Vitreous Enamels. Materials 2019, 12, 248. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.; Addy, M. Wear of Macaco in Vitro by Toothpaste Abrasives and Sun Detergents Alone and Combined. J. Clin. Periodontol. 2005, 32, 1242–1246. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Sun, X.; Kishen, A.; Deng, X.; Yang, X.; Wang, H.; Cong, C.; Wang, Y.; Wu, M. Biomimetic Remineralization of Demineralized Enamel with Nano-complexes of Phosphorylated Chitosan and Amorphous Calcium Phosphate. J. Mater. Sci. Mater. Med. 2014, 25, 2619–2628. [Google Scholar] [CrossRef]
- Iheozor-Ejiofor, Z.; Worthington, H.V.; Walsh, T.; O’Malley, L.; Clarkson, J.E.; Macey, R.; Alam, R.; Tugwell, P.; Welch, V.; Glenny, A.M. Water Fluoridation for the Prevention of Dental Caries. Cochrane Database Syst. Rev. 2015, 6, CD010856. [Google Scholar] [CrossRef]
Toothpaste/Elements | Slope | Penetration Depth (μm) | ||||
---|---|---|---|---|---|---|
Si | P | Ca | Si | P | Ca | |
Free | ― | 0.30 ± 0.03 | 0.30 ± 0.06 | ― | ― | ― |
Biorepair | 1.10 ± 0.05 & −2.08 ± 0.02 | −0.63 ± 0.01 & 0.42 ± 0.01 | −0.37 ± 0.01 & 0.29 ± 0.01 | 6.91 ± 0.92 | 16.10 ± 0.75 | 15.64 ± 0.68 |
F1400 | −0.27 ± 0.01 & −0.40 ± 0.01 | 0.26 ± 0.03 | 0.14 ± 0.01 | 13.03 ± 0.69 | ― | ― |
F500 | −0.59 ± 0.01 & −0.59 ± 0.01 | 0.11 ± 0.02 | 0.09 ± 0.01 | 14.78 ± 0.81 | ― | ― |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossù, M.; Matassa, R.; Relucenti, M.; Iaculli, F.; Salucci, A.; Di Giorgio, G.; Familiari, G.; Polimeni, A.; Di Carlo, S. Morpho-Chemical Observations of Human Deciduous Teeth Enamel in Response to Biomimetic Toothpastes Treatment. Materials 2020, 13, 1803. https://doi.org/10.3390/ma13081803
Bossù M, Matassa R, Relucenti M, Iaculli F, Salucci A, Di Giorgio G, Familiari G, Polimeni A, Di Carlo S. Morpho-Chemical Observations of Human Deciduous Teeth Enamel in Response to Biomimetic Toothpastes Treatment. Materials. 2020; 13(8):1803. https://doi.org/10.3390/ma13081803
Chicago/Turabian StyleBossù, Maurizio, Roberto Matassa, Michela Relucenti, Flavia Iaculli, Alessandro Salucci, Gianni Di Giorgio, Giuseppe Familiari, Antonella Polimeni, and Stefano Di Carlo. 2020. "Morpho-Chemical Observations of Human Deciduous Teeth Enamel in Response to Biomimetic Toothpastes Treatment" Materials 13, no. 8: 1803. https://doi.org/10.3390/ma13081803
APA StyleBossù, M., Matassa, R., Relucenti, M., Iaculli, F., Salucci, A., Di Giorgio, G., Familiari, G., Polimeni, A., & Di Carlo, S. (2020). Morpho-Chemical Observations of Human Deciduous Teeth Enamel in Response to Biomimetic Toothpastes Treatment. Materials, 13(8), 1803. https://doi.org/10.3390/ma13081803