Microstructure Characterization and Interfacial Reactions between Au-Sn Solder and Different Back Metallization Systems of GaAs MMICs
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. TiW/Au Metallization
3.2. Au/Ti/Au Metallization
3.3. Interfacial Reactions
4. Conclusions
- The terminal metalized Au layer of the TiW/Au metallization partially dissolved in the melting An-Sn solder. Isothermal solidification locally occurred with the formation of ζ-Au5Sn in the scrubbing process, inducing the edge breakage of the MMIC. A larger and thinner preform was preferred to avoid the local lack of Au-Sn solder.
- The top Au film of the Au/Ti/Au metallization completely dissolved in the melting An-Sn solder. The combination was achieved by the wetting and reaction of Au-Sn solder to the Ti layer with the formation of TiAu4 IMC. The oxidation film of Au-Sn preform prevented the melting solder wetting Ti layer. A small specific surface area of the preform was favored to improve the wettability.
Author Contributions
Funding
Conflicts of Interest
References
- Bensoussan, A.; Marec, R.; Muraro, J.L.; Portal, L.; Calvel, P.; Barillot, C.; Perichaud, M.G.; Marchand, L.; Vignon, G. GaAs P-HEMT MMIC processes behavior under multiple heavy ion radiation stress conditions combined with DC and RF biasing. Microelectron. Reliab. 2013, 53, 1466–1470. [Google Scholar] [CrossRef]
- Xu, X.Q.; Mo, J.J.; Chen, W.; Wang, Z.Y.; Shang, Y.H.; Wang, Y.; Zheng, Q.; Wang, L.P.; Huang, Z.L.; Yu, F.X. A new meshing criterion for the equivalent thermal analysis of GaAs PHEMT MMICs. Microelectron. Reliab. 2017, 68, 30–38. [Google Scholar] [CrossRef]
- Chung, T.Y.; Jhang, J.H.; Chen, J.S.; Lo, Y.C.; Ho, G.H.; Wu, M.L.; Sun, C.C. A study of large area die bonding materials and their corresponding mechanical and thermal properties. Microelectron. Reliab. 2012, 52, 872–877. [Google Scholar] [CrossRef]
- Hamidniaa, M.; Luo, Y.; Wang, X.D. Application of micro/nano technology for thermal management of high power LED packaging—A review. Appl. Therm. Eng. 2018, 145, 637–651. [Google Scholar] [CrossRef]
- Yoon, J.W.; Chun, H.S.; Jung, S.B. Liquid-state and solid-state interfacial reactions of fluxless-bonded Au-20Sn/ENIG solder joint. J. Alloy. Compd. 2009, 469, 108–115. [Google Scholar] [CrossRef]
- Zeng, G.; McDonald, S.; Nogita, K. Development of high-temperature solders: Review. Microelectron. Reliab. 2012, 52, 1306–1322. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Li, C.C.; Liao, L.L.; Liu, C.K.; Kao, C.R. Au–Sn bonding material for the assembly of power integrated circuit module. J. Alloy. Compd. 2016, 671, 340–345. [Google Scholar] [CrossRef]
- Sabbah, W.; Arabi, F.; Avino-Salvado, O.; Buttay, C.; Théolier, L.; Morel, H. Lifetime of power electronics interconnections in accelerated test conditions: High temperature storage and thermal cycling. Microelectron. Reliab. 2017, 76, 444–449. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.W.; Minter, J.; Lee, N.C. A brief review on high-temperature, Pb-free die-attach materials. J. Electron. Mater. 2019, 48, 201–210. [Google Scholar] [CrossRef]
- McNulty, J.C. Processing and reliability issues for eutectic Au-Sn solder joints. In Proceedings of the 41st International Symposium on Microelectronics Proceedings, San Francisco, CA, USA, 2–6 November 2008; pp. 909–916. [Google Scholar]
- Vianco, P.T. A Review of interface microstructures in electronic packaging applications: Soldering technology. Adv. Electron. Interconnect. Mater. 2019, 71, 158–177. [Google Scholar] [CrossRef]
- Wei, X.F.; Zhu, X.W.; Wang, R.C. Growth behavior and microstructure of intermetallics at interface of Au-Sn20 solder and metalized-Ni layer. Trans. Nonferrous Met. Soc. China 2017, 27, 1199–1205. [Google Scholar] [CrossRef]
- Dong, H.Q.; Vuorinen, V.; Liu, X.W.; Laurila, T.; Li, J.; Paulasto-Kröckel, M. Microstructural evolution and mechanical properties of Au-20wt.%Sn|Ni interconnection. J. Electron. Mater. 2016, 45, 566–575. [Google Scholar] [CrossRef]
- Wang, M.; Liu, H.S.; Wang, R.C.; Peng, J. Thermally stable Ni/Au–Sn/Ni joint fabricated via transient liquid-phase bonding. Mater. Sci. Eng. 2020, 773, 138738. [Google Scholar] [CrossRef]
- Lee, B.S.; Ko, Y.H.; Bang, J.H.; Lee, C.W.; Yoo, S.; Kim, J.K.; Yoon, J.W. Interfacial reactions and mechanical strength of Sn-3.0Ag-0.5Cu/Ni/Cu and Au-20Sn/Ni/Cu solder joints for power electronics applications. Microelectron. Reliab. 2017, 71, 119–125. [Google Scholar] [CrossRef]
- Vuorinen, V.; Rautiainen, A.; Heikkinen, H.; Paulasto-Kröckel, M. Optimization of contact metallizations for reliable wafer level Au-Sn bonds. Microelectron. Reliab. 2016, 64, 676–680. [Google Scholar] [CrossRef]
- Dong, H.Q.; Vuorinen, V.; Laurila, T.; Paulasto-Kröckel, M. Microstructural evolution and mechanical properties in (Au-Sn)eut-Cu interconnections. J. Electron. Mater. 2016, 45, 5478–5486. [Google Scholar] [CrossRef]
- Peng, J.; Liu, H.S.; Ma, H.B.; Shi, X.M.; Wang, R.C. Microstructure evolution and mechanical reliability of Cu/Au–Sn/Cu joints during transient liquid phase bonding. J. Mater. Sci. 2018, 53, 9287–9296. [Google Scholar] [CrossRef]
- Etschmaier, H.; Novák, J.; Eder, H.; Hadley, P. Reaction dynamics of diffusion soldering with the eutectic Au-Sn alloy on copper and silver substrates. Intermetallics 2012, 20, 87–92. [Google Scholar] [CrossRef]
- Garnier, A.; Baillin, X.; Hodaj, F. Interfacial reactions and diffusion path in gold–tin–nickel system during eutectic or thermo-compression bonding for 200 mm MEMS wafer level hermetic packaging. J. Mater. Sci. Mater. Electron. 2015, 26, 3427–3439. [Google Scholar] [CrossRef]
- Ivey, D.G. Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications. Micron 1998, 29, 281–287. [Google Scholar] [CrossRef]
- Okamoto, H.; Schlesinger, M.E.; Mueller, E.M. Alloy phase diagrams. In ASM Handbook; ASM Intertional: Cleveland, OH, USA, 2016; Volume 3, pp. 152–174. [Google Scholar]
- Kumar, A.K.; Paul, A. Interdiffusion studies in bulk Au–Ti system. J. Mater. Sci. Mater. Electron. 2010, 21, 1202–1206. [Google Scholar] [CrossRef]
- Lai, Y.T.; Liu, C.Y. Study of wetting reaction between eutectic Au-Sn and Au Foil. J. Electron. Mater. 2006, 35, 28–34. [Google Scholar] [CrossRef] [Green Version]
Material | Density (g·cm−3) | Melting Point (°C) | Thermal Conductivity (W·m−1·K−1) | Coefficient of Thermal Expansion (10−6 K−1) |
---|---|---|---|---|
GaAs | 5.37 | 1238 | 39 | 5.8 |
Au80-Sn20 | 14.5 | 280 | 57 | 16 |
Mo70-Cu30 | 9.8 | — | 180–200 | 9.1 |
Position | Element Composition (at.%) | Phase | |||||
---|---|---|---|---|---|---|---|
Au | Sn | Ni | Cu | Ga | As | ||
Point 1 | 92.6 | — | — | — | 4.8 | 2.6 | Retained Au |
Point 2 | 79.7 | 13.3 | 5.5 | 1.5 | — | — | ζ-(Au,Ni)5Sn |
Point 3 | 86.1 | 13.9 | — | — | — | — | ζ-Au5Sn |
Region 4 | 70.8 | 29.2 | — | — | — | — | Au-Sn eutectic |
Position | Element Composition (at.%) | Phase | |||||||
---|---|---|---|---|---|---|---|---|---|
Au | Sn | Ni | Mo | Cu | Ga | Ti | |||
Point 1 | 96.2 | — | — | — | — | 3.8 | — | Bottom Au layer | |
Point 2 | 83.7 | 16.3 | — | — | — | — | — | ζ-Au5Sn | |
Point 3 | 75.5 | 14.7 | 4.7 | 3.7 | 1.5 | — | — | ζ-(Au,Ni)5Sn | |
Point 4 | 71.3 | 23.0 | 1.2 | 3.2 | 0.9 | 0.5 | — | Au5Sn | Au-Sn eutectic |
Point 5 | 58.4 | 39.4 | — | 2.2 | — | — | — | Au-Sn | |
Point 6 | 77.0 | 14.4 | — | — | — | — | 8.6 | TiAu4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, N.; Hu, Y.; Sun, S. Microstructure Characterization and Interfacial Reactions between Au-Sn Solder and Different Back Metallization Systems of GaAs MMICs. Materials 2020, 13, 1266. https://doi.org/10.3390/ma13061266
Wu N, Hu Y, Sun S. Microstructure Characterization and Interfacial Reactions between Au-Sn Solder and Different Back Metallization Systems of GaAs MMICs. Materials. 2020; 13(6):1266. https://doi.org/10.3390/ma13061266
Chicago/Turabian StyleWu, Na, Yongfang Hu, and Shufeng Sun. 2020. "Microstructure Characterization and Interfacial Reactions between Au-Sn Solder and Different Back Metallization Systems of GaAs MMICs" Materials 13, no. 6: 1266. https://doi.org/10.3390/ma13061266
APA StyleWu, N., Hu, Y., & Sun, S. (2020). Microstructure Characterization and Interfacial Reactions between Au-Sn Solder and Different Back Metallization Systems of GaAs MMICs. Materials, 13(6), 1266. https://doi.org/10.3390/ma13061266