Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials
Abstract
1. Introduction
2. Theoretical Model
2.1. Surface Impedance of the Perforated Plate with Extended Tubes
2.2. Surface Impedance of Porous Material
2.3. Prediction of the Diffuse-Field Sound-Absorption Properties of Periodic Absorber
3. Oblique-Incidence Sound-Absorption Properties of Periodic Absorber
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maa, D.Y. Theory and design of micro-perforated sound absorbing constructions. Sci. Sin. 1975, 18, 55–71. [Google Scholar]
- Maa, D.Y. Microperforated-panel wideband absorbers. Noise Control. Eng. J. 1987, 29, 77–84. [Google Scholar] [CrossRef]
- Fuchs, H.V.; Zha, X. Acrylic-glass sound absorbes in the Plenum of the Deutscher Bundestag. Appl. Acoust. 1997, 51, 211–217. [Google Scholar] [CrossRef]
- Kang, J.; Fuchs, H.V. Predicting the absorption of open weave textiles and micro-perforated membranes backed by an air space. J. Sound Vib. 1999, 220, 905–920. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Lee, E.W.M.; Ng, C.F. Sound absorption of a finite flexible micro-perforated panel backed by an air cavity. J. Sound Vib. 2005, 287, 227–243. [Google Scholar] [CrossRef]
- Sakagami, K.; Morimoto, M.; Yairi, M. A note on the relationship between the sound absorption by microperforated panels and panel/membrane-type absorbers. Appl. Acoust. 2009, 70, 1131–1136. [Google Scholar] [CrossRef]
- Toyoda, M.; Mu, R.L.; Takahashi, D. Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers. Appl. Acoust. 2010, 71, 315–320. [Google Scholar] [CrossRef]
- Sakagami, K.; Morimoto, M.; Koike, W. A numerical study of double-leaf microperforated panel absorbers. Appl. Acoust. 2006, 67, 609–619. [Google Scholar] [CrossRef]
- Sakagami, K.; Nakamori, T.; Morimoto, M.; Yairi, M. Double-leaf microperforated panel space absorbers: A revised theory and analysis. Appl. Acoust. 2009, 70, 703–709. [Google Scholar] [CrossRef]
- Sakagami, K.; Fukutani, Y.; Yairi, M.; Morimoto, M. A theoretical study on the effect of a permeable membrane in the air cavity of a double-leaf microperforated panel space sound absorber. Appl. Acoust. 2014, 79, 104–109. [Google Scholar] [CrossRef]
- Liu, J.; Herrin, D.W. Enhancing micro-perforated panel attenuation by partitioning the adjoining cavity. Appl. Acoust. 2010, 17, 120–127. [Google Scholar] [CrossRef]
- Wang, C.; Huang, L. On the acoustic properties of parallel arrangement of multiple micro-perforated panels with different cavity depths. J. Acoust. Soc. Am. 2010, 130, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Gai, X.; Xing, T.; Li, X.; Zhang, B.; Wang, F.; Cai, Z.N.; Han, Y. Sound absorption of microperforated panel with L shape division cavity structure. Appl. Acoust. 2017, 122, 41–50. [Google Scholar] [CrossRef]
- Tang, Y.; Li, F.; Xin, F.; Lu, T. Heterogeneously perforated honeycomb-corrugation hybrid sandwich panel as sound absorber. Mater. Des. 2017, 134, 502–512. [Google Scholar] [CrossRef]
- Huang, S.; Li, S.; Wang, X.; Mao, D. Micro-perforated absorbers with incompletely partitioned cavities. Appl. Acoust. 2017, 126, 114–119. [Google Scholar] [CrossRef]
- Pfretzschner, J.; Cobo, P.; Simòn, F.; Cuesta, M.; Fernández, A. Microperforated insertion units: An alternative strategy to design microperforated panels. Appl. Acoust. 2006, 67, 62–73. [Google Scholar] [CrossRef]
- Park, S.H. Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption. J. Sound Vib. 2013, 332, 4895–4911. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, Y.; Wu, Y. Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators. Appl. Acoust. 2016, 114, 92–98. [Google Scholar] [CrossRef]
- Gai, X.; Xing, T.; Li, X.; Zhang, B.; Wang, W. Sound absorption of microperforated panel mounted with helmholtz resonators. Appl. Acoust. 2016, 114, 260–265. [Google Scholar] [CrossRef]
- Zhao, X.; Fan, X. Enhancing low frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plates. Appl. Acoust. 2015, 88, 123–128. [Google Scholar] [CrossRef]
- Gai, X.; Xing, T.; Li, X.; Zhang, B.; Cai, Z.N.; Wang, F. Sound absorption of microperforated panel with membrane cell and mass blocks composite structure. Appl. Acoust. 2018, 137, 98–107. [Google Scholar] [CrossRef]
- Chang, D.; Liu, B.; Li, X. An electromechanical low frequency panel sound absorber. J. Acoust. Soc. Am. 2010, 128, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Jing, R.; Qiu, X. Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker. J. Acoust. Soc. Am. 2014, 135, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Wang, H.; Li, Z.; Zhu, L.; Chen, R.; Kong, D.; Zhao, Z. Sound absorption of a flexible micro-perforated panel absorber based on PVDF piezoelectric film. Appl. Acoust. 2015, 88, 84–89. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Tian, J.; Wei, W. The perforated panel resonator with flexible tube bundle and its acoustical measurements. In Proceedings of the Inter-Noise 2001, The Hague, The Netherlands, 27–30 August 2001. [Google Scholar]
- Yahya, I.; Harjana, H. Sound absorption improvement strategy for QRD element. In Proceedings of the 20th International Congress on Sound & Vibration 2013, Bangkok, Thailand, 7–11 July 2013. [Google Scholar]
- Li, D.; Chang, D.; Liu, B. Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes. Appl. Acoust. 2016, 102, 126–132. [Google Scholar] [CrossRef]
- Li, D.; Chang, D.; Liu, B. Enhanced low- to mid-frequency sound absorption using parallel-arranged perforated plates with extended tubes and porous material. Appl. Acoust. 2017, 127, 316–323. [Google Scholar] [CrossRef]
- Simon, F. Long Elastic Open Neck Acoustic Resonator for low frequency absorption. J. Sound Vib. 2018, 421, 1–16. [Google Scholar] [CrossRef]
- Simon, F. Long Elastic Open Neck Acoustic Resonator in flow. In Proceedings of the Inter-Noise 2016, Hamburg, German, 21–24 August 2016. [Google Scholar]
- Takahashi, D. A new method for predicting the sound absorption of perforated absorber systems. Appl. Acoust. 1997, 51, 71–84. [Google Scholar] [CrossRef]
- Wang, C.; Huang, L.; Zhang, Y. Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern. J. Sound Vib. 2014, 333, 6828–6842. [Google Scholar] [CrossRef]
- Panneton, R.; Olny, X. Acoustical determination of the governing viscous dissipation in porous media. J. Acoust. Soc. Am. 2006, 119, 2027–2040. [Google Scholar] [CrossRef]
- Olny, X.; Panneton, R. Acoustical determination of the governing thermal dissipation in porous media. J. Acoust. Soc. Am. 2008, 123, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Stinson, R.; Daigle, G. Electronic system for the measurement of flow resistance. J. Acoust. Soc. Am. 1988, 83, 2422–2428. [Google Scholar] [CrossRef]
- Iwase, T.; Izumi, Y.; Kawabata, R. A new measuring method for sound propagation by using sound tube without any air spaces. In Proceedings of the Inter-Noise and Noise-Congress and Conference Proceedings, Christchurch, New Zealand, 16–18 November 1998. [Google Scholar]
- Salissou, Y.; Panneton, R. Wideband characterization of the complex wave and characteristic impedance of sound absorbers. J. Acoust. Soc. Am. 2010, 128, 2868–2876. [Google Scholar] [CrossRef]
- Johnson, D.L.; Koplik, J.; Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 1987, 176, 379–402. [Google Scholar] [CrossRef]
- Lafarge, D.; Lemarinier, P.; Allard, J.F.; Tarnow, V. Dynamic compressibility of air in porous structures and audible frequencies. J. Acoust. Soc. Am. 1997, 102, 1995–2006. [Google Scholar] [CrossRef]
- Mechel, F.P. Sound Fields at Periodic Absorbers. J. Sound Vib. 1990, 136, 379–412. [Google Scholar] [CrossRef]
- Drotleff, H.; Wack, R.; Leistner, P. Absorption of periodically aligned absorber strips in concrete structures. Build. Acoust. 2009, 16, 233–256. [Google Scholar] [CrossRef]
- ISO 354:2003, Acoustics-Measurement of Sound Absorption in a Reverberation Room; ISO: Geneva, Switzerland, 2003.
Parameters | σ (N·m−4·s) | ϕ | α_∞ | Λ (μm) | Λ′ (μm) | |
---|---|---|---|---|---|---|
Basotect G+ | 10934 ± 182 | 0.994 | 1.04 ± 0.03 | 92 ± 5 | 197 ± 9 | 27 ± 1 |
Basotect TG | 7800 ± 200 | 0.993 | 1.03 ± 0.02 | 134 ± 16 | 317 ± 32 | 47 ± 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Chang, D.; Liu, B. Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials. Materials 2020, 13, 1091. https://doi.org/10.3390/ma13051091
Li D, Chang D, Liu B. Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials. Materials. 2020; 13(5):1091. https://doi.org/10.3390/ma13051091
Chicago/Turabian StyleLi, Dengke, Daoqing Chang, and Bilong Liu. 2020. "Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials" Materials 13, no. 5: 1091. https://doi.org/10.3390/ma13051091
APA StyleLi, D., Chang, D., & Liu, B. (2020). Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials. Materials, 13(5), 1091. https://doi.org/10.3390/ma13051091