New Insight into Phase Transitions of Porous Glass-Based Ferroelectric Nanocomposites
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure Characterization
3.2. Differential Scanning Calorimetry (DSC)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Federsel, K.; Wortmann, J.; Ladenberger, M. High-temperature and Corrosion Behavior of Nitrate Nitrite Molten Salt Mixtures Regarding their Application in Concentrating Solar Power Plants. Energy Procedia 2015, 69, 618–625. [Google Scholar] [CrossRef]
- Kutnjak, Z.; Vodopivec, B.; Blinc, R.; Fokin, A.V.; Kumzerov, Y.A.; Vakhrushev, S.B. Calorimetric and dielectric studies of ferroelectric sodium nitrite confined in a nanoscale porous glass matrix. J. Chem. Phys. 2005, 123, 084708. [Google Scholar] [CrossRef] [PubMed]
- Nabereznov, A.; Fokin, A.; Kumzerov, Y.; Sobotnikov, A.; Vakhrushev, S.; Dorner, B. Structure and properties of confined sodium nitrite. Eur. Phys. J. E 2003, 12, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Bury, P.C.; McLaren, A.C. Pyroelectric Properties of Rubidium, Cesium, and Thallium Nitrates. Phys. Stat. Solidi 1969, 31, 799–806. [Google Scholar] [CrossRef]
- Sawada, S.; Nomura, S.; Fujii, S. Ferroelectricity in the Phase III of KNO3. J. Phys. Soc. Jpn. 1958, 13, 1549. [Google Scholar] [CrossRef]
- Myasnikova, T.P.; Evseeva, R.Y. Infrared spectra of KNO3 and NaNO2 at phase transitions. Sov. Phys. J. 1970, 13, 773–775. [Google Scholar] [CrossRef]
- Asao, Y.; Yoshida, I.; Ando, R.; Sawada, S. The Electrical Resistivities of NaNO2 and KNO3 Crystals. J. Phys. Soc. Jpn. 1962, 17, 442–446. [Google Scholar] [CrossRef]
- Godfrey, R.B.; Scott, J.F.; Meadows, H.B.; Golabi, M.; Araujo, C.A.; McMillan, L.D. Analysis of electrical switching in sub-micron KNO3 thin films. Ferroelectr. Lett. Sect. 1986, 5, 167–172. [Google Scholar] [CrossRef]
- Vera-Avila, L.E.; Garcia-Salgado, E.; Garcia de Liasera, M.P.; Pena-Alvarez, A. Binding Characteristics of Bovine Serum Albumin Encapsulated in Sol-Gel Glasses: An Alternative for Protein Interaction Studies. Anal. Biochem. 2008, 373, 272–280. [Google Scholar] [CrossRef]
- Pankova, S.V.; Poborchii, V.V.; Solov’ev, V.G. The giant dielectric constant of opal containing sodium nitrate nanoparticles. J. Phys. Condens. Matter 1996, 8, L203–L206. [Google Scholar] [CrossRef]
- Vakhrushev, S.B.; Kumzerov, Y.A.; Fokin, A.; Naberezhnov, A.A.; Zalar, B.; Lebar, A.; Blinc, R. 23Na spin-lattice relaxation of sodium nitrite in confined geometry. Phys. Rev. B 2004, 70. [Google Scholar] [CrossRef]
- Tien, C.; Charnaya, E.V.; Lee, M.K.; Baryshnikov, S.V.; Sun, S.Y.; Michel, D.; Bцhlmann, W. Coexistence of melted and ferroelectric states in sodium nitrite within mesoporous sieves. Phys. Rev. B 2005, 72, 104105. [Google Scholar] [CrossRef]
- Tien, C.; Charnaya, E.V.; Lee, M.K.; Baryshnikov, S.V.; Michel, D.; Bцhlmann, W. NMR studies of structure and ferroelectricity for Rochelle salt nanoparticles embedded in mesoporous sieves. J. Phys. Condens. Matter 2008, 20, 215205. [Google Scholar] [CrossRef]
- Vakhrushev, S.B.; Golosovsky, I.V.; Koroleva, E.Y.; Naberezhnov, A.A.; Okuneva, N.M.; Smirnov, O.P.; Fokin, A.V.; Tovar, M.; Glazman, M. Structure and dielectric response of Na1-xKxNO2 nanocomposite solid solutions. Phys. Solid State 2008, 50, 1548–1554. [Google Scholar] [CrossRef]
- Awschalom, D.D.; Warnock, J. Super cooled liquids and solids in porous glass. Phys. Rev. B 1987, 35, 6779–6785. [Google Scholar] [CrossRef]
- Brown, D.W.; Sokol, P.E.; Ehrlich, S.N. New disorder induced phase transitions of classical rare gases in porous vycor glass. Phys. Rev. Lett. 1998, 81, 1019–1022. [Google Scholar] [CrossRef]
- Mu, R.; Malhotra, V.M. Effects of surface and physical confinement on the phase transitions of cyclohexane in porous silica. Phys. Rev. B 1991, 44, 4296–4303. [Google Scholar] [CrossRef]
- Charnaya, E.V.; Tien, C.; Lin, K.J.; Kumzerov, Y.A. X-ray and resistance studies of the melting and freezing phase transitions for gallium in an opal. J. Phys. Condens. Matter 1998, 10, 7273–7282. [Google Scholar] [CrossRef]
- Poprawski, R.; Rysiakiewicz-Pasek, E.; Sieradzki, A.; Ciżman, A.; Polańska, J. Ferroelectric phase transitions in KNO3 embedded into porous glasses. J. NonCryst. Solids 2007, 353, 4457–4461. [Google Scholar] [CrossRef]
- Jia, W.; Fan, C.; Wang, L.; Wang, Q.; Zhao, M.; Zhou, A.; Li, J. Extremely Accessible Potassium Nitrate (KNO3) as the Highly Efficient Electrolyte Additive in Lithium Battery. ACS Appl. Mater. Interfaces 2016, 8, 15399–15405. [Google Scholar] [CrossRef]
- Fernández, A.G.; Gomez-Vidal, J.C. Thermophysical properties of low cost lithium nitrate salts produced in northern Chile for thermal energy storage. Renew. Energy 2017, 101, 120–125. [Google Scholar] [CrossRef]
- Fernándeza, A.G.; Ushakb, S.; Galleguillosb, H.; Péreza, F.J. Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants. Appl. Energy 2014, 119, 131–140. [Google Scholar] [CrossRef]
- Rogeta, F.; Favotto, C.; Rogez, J. Study of the KNO3–LiNO3 and KNO3–NaNO3–LiNO3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant. Sol. Energy 2013, 95, 155–169. [Google Scholar] [CrossRef]
- Nimmo, J.K.; Lucas, B.W. The crystal structures of γ and β KNO3 and the α←γ←β phase transformations. Acta Cryst. Sect. B 1976, 32, 1968–1971. [Google Scholar] [CrossRef]
- Fraser, W.L.; Kennedy, S.W.; Taylor, G.F. Structural relationships between the polymorphs of silver nitrate. Acta Cryst. Sect. B 1977, 33, 311–313. [Google Scholar] [CrossRef]
- Antropova, T.V.; Girsova, M.A.; Anfimova, I.N.; Drozdova, I.A. Spectral properties of the high-silica porous glasses doped by silver halides. J. Lumin. 2018, 193, 29–33. [Google Scholar] [CrossRef]
- Ermakova, L.E.; Volkova, A.V.; Kuznetsova, A.S.; Grinkevich, E.A.; Antropova, T.V. Electrokinetic Characteristics of Porous Glasses in Solution of Sodium and Iron (III) Chlorides. Colloid J. 2018, 80, 255–265. [Google Scholar] [CrossRef]
- Kuznetsova, A.S.; Ermakova, L.E.; Anfimova, I.N.; Antropova, T.V. Electrokinetic characteristics of bismuth-containing materials based on porous glasses. Glass Phys. Chem. 2020, 46, 290–297. [Google Scholar]
- Pshenko, O.A.; Girsova, M.A.; Golovina, G.F.; Antopova, T.V. Study of the Iron—Containing Sodium Borosilicate Two—Phase Classes and Porous Glasses by Optical Spectroscopy. Glass Phys. Chem. 2016, 42, 33–37. [Google Scholar] [CrossRef]
- Lapshin, E.A.; Arsentev, M.Y.; Pshenko, O.A.; Antropova, T.V. Structure of the ferroelectric phase KNO3, formed in nanoporous glass matrix. Fiz. Khim. Stekla 2012, 38, 817–819. (In Russian) [Google Scholar]
- Pshenko, O.A.; Antropova, T.V.; Arsentev, M.Y.; Drozdova, I. New vitreous nanocomposites containing phases of Fe3O4 and γ-KNO3. Glass Phys. Chem. 2015, 41, 509–514. [Google Scholar] [CrossRef]
- Girsova, M.A.; Golovina, G.F.; Anfimova, I.N.; Kurilenko, L.N. Infrared Spectroscopy Study of Silver-Containing Composite Materials Based on Nanoporous Silicate Glass Doped with Tb3+ or Sm3+ Ions. Glass Phys. Chem. 2019, 45, 325–331. [Google Scholar] [CrossRef]
- Girsova, M.A.; Golovina, G.F.; Kurilenko, L.N.; Antropova, T.V. Synthesis and study of bismuth-containing high-silica glass by the IR spectroscopy method. Glass Phys. Chem. 2015, 41, 93–97. [Google Scholar] [CrossRef]
- Girsova, M.A.; Golovina, G.F.; Drozdova, I.A.; Polyakova, I.G.; Antropova, T.V. Infrared studies and spectral properties of photochromic high silica glasses. Opt. Appl. 2014, 44, 337–344. [Google Scholar]
- Burns, A.E.; Royle, M.; Martin, S.W. Infrared spectroscopy of AgI doped Ag2S+B2S3 fast ion conducting thioborate glasses. J. NonCryst. Solids 2000, 262, 252–257. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Bowmaker, G.A.; Metson, J.B. The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study. Phys. Chem. Chem. Phys. 2001, 3, 3838–3845. [Google Scholar] [CrossRef]
- Samee, M.A.; Edukondalu, A.; Ahmmad, S.K.; Taqiullah, S.M.; Rahman, S. Mixed-Alkali Effect in Li2O–Na2O–K2O–B2O3 Glasses: Infrared and Optical Absorption Studies. J. Electron. Mater. 2013, 42, 2516–2524. [Google Scholar] [CrossRef]
- Miller, F.A.; Wilkins, C.H. Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem. 1952, 24, 1253–1294. [Google Scholar] [CrossRef]
- Coelho, J.; Nandyalam, S.H.; Gomes, P.S.; Sampaio, P.; Pacheco, A.P.; Nunes, O.C.; Lopes, M.A.; Fernandes, M.H.; Santos, J.D. Development and Characterization of Ag2O-Doped ZnLB Glasses and Biological Assessment of Ag2O–ZnLB–Hydroxyapatite Composites. J. Am. Ceram. Soc. 2012, 95, 2732–2740. [Google Scholar] [CrossRef]
- Mgszaros Szecsenyi, K.; Tomor, K.; Pokol, G. The phase diagram of the AgNO3-KNO3 System Determined by Differential Scanning Calorimetry. J. Therm. Anal. 1994, 41, 125–134. [Google Scholar] [CrossRef]
- Boa, D.; Hellali, D.; Licbarski, D.; Tizzotti, M.; Zamali, H.; Favotto, C.; Benigni, P.; Rogez, J. Experimental investigation and calculation of the binary (AgNO3 + KNO3) phase diagram. J. Chem. Thermodyn. 2015, 81, 44–51. [Google Scholar] [CrossRef]
- Sieradzki, A.; Komar, J.; Rysiakiewicz-Pasek, E.; Ciżman, A.; Poprawski, R. Calorimetric Investigations of Phase Transitions in KNO3 Embedded into Porous Glasses. Ferroelectrics 2010, 402, 60–65. [Google Scholar] [CrossRef]
Glass | Composition, As-Analyzed, wt.% | Porosity W, cm3/cm3 (%) | Specific Surface Area SA, m2/g | Mean Pore Diameter D, nm | ||||
---|---|---|---|---|---|---|---|---|
SiO2 | Na2O | K2O | B2O3 | Al2O3 | ||||
MIP | 97.11 | 0.49 | 0 | 2.29 | 0.11 | 0.29 (29) | 164 | 3 |
MAP | 94.33 | 0.71 | 0.59 | 4.23 | 0.14 | 0.57 (57) | 87 | 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rysiakiewicz-Pasek, E.; Antropova, T.; Polyakova, I.; Pshenko, O.; Ciżman, A. New Insight into Phase Transitions of Porous Glass-Based Ferroelectric Nanocomposites. Materials 2020, 13, 3698. https://doi.org/10.3390/ma13173698
Rysiakiewicz-Pasek E, Antropova T, Polyakova I, Pshenko O, Ciżman A. New Insight into Phase Transitions of Porous Glass-Based Ferroelectric Nanocomposites. Materials. 2020; 13(17):3698. https://doi.org/10.3390/ma13173698
Chicago/Turabian StyleRysiakiewicz-Pasek, Ewa, Tatiana Antropova, Irina Polyakova, Olga Pshenko, and Agnieszka Ciżman. 2020. "New Insight into Phase Transitions of Porous Glass-Based Ferroelectric Nanocomposites" Materials 13, no. 17: 3698. https://doi.org/10.3390/ma13173698
APA StyleRysiakiewicz-Pasek, E., Antropova, T., Polyakova, I., Pshenko, O., & Ciżman, A. (2020). New Insight into Phase Transitions of Porous Glass-Based Ferroelectric Nanocomposites. Materials, 13(17), 3698. https://doi.org/10.3390/ma13173698