Next Article in Journal
Heat-Induced Acceleration of Pozzolanic Reaction Under Restrained Conditions and Consequent Structural Modification
Previous Article in Journal
Experimental Study on the Stiffness of Steel Beam-to-Upright Connections for Storage Racking Systems
Previous Article in Special Issue
Effect of Pre-Wetted Zeolite Sands on the Autogenous Shrinkage and Strength of Ultra-High-Performance Concrete
Open AccessArticle

Reactive Powder Concrete Containing Basalt Fibers: Strength, Abrasion and Porosity

1
Department of Building Materials Engineering, Technical University of Opole, 45 061 Opole, Poland
2
Department of Materials Engineering and Chemistry, Czech Technical University in Prague, 166 29 Prague, Czech Republic
*
Author to whom correspondence should be addressed.
Materials 2020, 13(13), 2948; https://doi.org/10.3390/ma13132948
Received: 4 June 2020 / Revised: 24 June 2020 / Accepted: 29 June 2020 / Published: 1 July 2020
(This article belongs to the Special Issue High Performance Concrete)
The paper presents the test results of basalt fiber impact on a compressive and flexural strength, resistance to abrasion and porosity of Reactive Powder Concrete (RPC). The reasons for testing were interesting mechanical properties of basalt fibers, the significant tensile strength and flexural strength, and in particular the resistance to high temperatures, as well as a relatively small number of RPC tests performed with those fibers and different opinions regarding the impact of those fibers on concrete strength. The composition of the concrete mix was optimized to obtain the highest packing density of particles in the composite, based on the optimum particle size distribution curve acc. to Funk. Admixture of basalt fibers was used in quantity 2, 3, 6, 8 and 10 kg/m3, length 12 mm and diameter 18 µm. A low water-to-binder ratio, i.e., from 0.24, was obtained through application of a polycarboxylate-based superplasticizer. The introduction of up to 10 kg/m3 of basalt fibers to RPC mix was proved to be possible, while keeping the same w/c ratio equal to 0.24, with a slight loss of workability of the concrete mix as the content of fibers increased. It was found that the increase of the fiber content in RPC to 10 kg/m3, despite the w/c ratio was kept the same, caused reduction of the concrete compressive strength by 18.2%, 7.8% and 13.6%, after 2, 7, and 28 days respectively. Whereas, the flexural strength of RPC increased gradually (maximum by 15.9%), along with the fiber quantity increase up to 6 kg/m3, and then it reduced (maximum by 17.7%), as the fiber content in the concrete was further increased. The reduction of RPC compressive strength, along with the increase in basalt fibers content, leads to the increase of the total porosity, as well as the change in pore volume distribution. The reduction of RPC abrasion resistance was demonstrated along with the increase of basalt fibers content, which was explained by the compressive strength reduction of that concrete. A linear relation between the RPC abrasion resistance and the compressive strength involves a high determination coefficient equal to 0.97. View Full-Text
Keywords: reactive powder concrete; strength; basalt fibers; abrasion; porosity reactive powder concrete; strength; basalt fibers; abrasion; porosity
Show Figures

Figure 1

MDPI and ACS Style

Grzeszczyk, S.; Matuszek-Chmurowska, A.; Vejmelková, E.; Černý, R. Reactive Powder Concrete Containing Basalt Fibers: Strength, Abrasion and Porosity. Materials 2020, 13, 2948.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop