Next Article in Journal
Numeric Analysis on Shear Behavior of High-Strength Concrete Single-Keyed Dry Joints with Fixing Imperfections in Precast Concrete Segmental Bridges
Next Article in Special Issue
Dendropanax Morbifera Extract-Mediated ZnO Nanoparticles Loaded with Indole-3-Carbinol for Enhancement of Anticancer Efficacy in the A549 Human Lung Carcinoma Cell Line
Previous Article in Journal
POM/EVA Blends with Future Utility in Fused Deposition Modeling
Previous Article in Special Issue
Well-Defined Diblock Poly(ethylene glycol)-b-Poly(ε-caprolactone)-Based Polymer-Drug Conjugate Micelles for pH-Responsive Delivery of Doxorubicin
Open AccessFeature PaperArticle

Sulfonic Acid Derivative-Modified SBA-15, PHTS and MCM-41 Mesoporous Silicas as Carriers for a New Antiplatelet Drug: Ticagrelor Adsorption and Release Studies

Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
Authors to whom correspondence should be addressed.
Materials 2020, 13(13), 2913;
Received: 27 May 2020 / Revised: 12 June 2020 / Accepted: 25 June 2020 / Published: 29 June 2020
(This article belongs to the Special Issue Biomaterial Design for Disease Applications)
Three mesoporous, siliceous materials, i.e., SBA-15 (Santa Barbara Amorphous), PHTS (Plugged Hexagonal Templated Silica) and MCM-41 (Mobil Composition of Matter), functionalized with a sulfonic acid derivative, were successfully prepared and applied as the carriers for the poorly water-soluble drug, ticagrelor. The siliceous carriers were characterized using nitrogen sorption analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and elemental analysis. The adsorption studies were conducted in acetonitrile. At the highest equilibrium concentrations, the amount of ticagrelor Qe that adsorbed onto the examined silicas was in the range of 83 to 220 mg/g, increasing in the following order: PHTS-(CH2)3-SO3H < SBA-15-(CH2)3-SO3H < MCM-41-(CH2)3-SO3H. The equilibrium adsorption data were analyzed using the Freundlich, Jovanovich, Langmuir, Temkin, Dubinin-Radushkevich, Dubinin-Astakhov and Redlich-Peterson models. In order to find the best-fit isotherm for each model, a nonlinear fitting analysis was carried out. Based on the minimized values of the ARE function, the fit of the isotherms to the experimental points for ticagrelor adsorption onto the modified silicas can be ordered as follows: SBA-15-(CH2)3-SO3H (Redlich-Peterson > Dubinin-Astakhov > Temkin), PHTS-(CH2)3-SO3H (Redlich-Peterson > Temkin > Dubinin-Astakhov), MCM-41-(CH2)3-SO3H (Redlich-Peterson > Dubinin-Astakhov > Langmuir). The values of adsorption energy (above 8 kJ/mol) indicate the chemical nature of ticagrelor adsorption onto propyl-sulfonic acid-modified silicas. The results of release studies indicated that at pH 4.5, modified SBA-15 and MCM-41 carriers accelerate the drug dissolution process, compared to the dissolution rate of free crystalline ticagrelor. Intriguingly, modified PHTS silica provides prolonged drug release kinetics compared to other siliceous adsorbents and to the dissolution rate of crystalline ticagrelor. A Weibull release model was employed to describe the release profiles of ticagrelor from the prepared carriers. The time necessary to dissolve 50% and 90% of ticagrelor from mesoporous adsorbents at pH 4.5 increased in the following order: SBA-15-(CH2)3-SO3H < MCM-41-(CH2)3-SO3H < PHTS-(CH2)3-SO3H. View Full-Text
Keywords: drug; silica; adsorption; release; carrier; modeling drug; silica; adsorption; release; carrier; modeling
Show Figures

Figure 1

MDPI and ACS Style

Moritz, M.; Geszke-Moritz, M. Sulfonic Acid Derivative-Modified SBA-15, PHTS and MCM-41 Mesoporous Silicas as Carriers for a New Antiplatelet Drug: Ticagrelor Adsorption and Release Studies. Materials 2020, 13, 2913.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop