Thermal and Morphological Properties of Poly(L-Lactic Acid)/Poly(D-Lactic Acid)-B-Polycaprolactone Diblock Copolymer Blends
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Blends of PLLA and PCL Oligomers
3.2. Thermal Properties of Blends of PLLA and PCL Oligomers
- The miscibility of the individual components
- The crystallinity of the individual components
3.3. Thermal Properties of Blends of PLLA and PDLA-PCL Diblock Copolymers
3.4. Thermooptical Properties of Blends of PLLA and PDLA-b-PCL Diblock Copolymers
3.5. Migration of PCL Oligomers and PDLA-b-PCL Copolymers in Blends with PLLA
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.; Zhang, J. Research progress in toughening modification of poly(lactic acid). J. Polym. Sci. B Polym. Phys. 2011, 49, 1051–1083. [Google Scholar] [CrossRef]
- Labrecque, L.V.; Kumar, R.A.; Dave, R.; Gross, R.A.; McCarthy, S.P. Citrate esters as plasticizers for poly(lactic acid). J. Appl. Polym. Sci. 1997, 66, 1507–1513. [Google Scholar] [CrossRef]
- Ljungberg, N.; Wesslen, B. The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J. Appl. Polym. Sci. 2002, 86, 1227–1234. [Google Scholar] [CrossRef]
- Baiardo, M.; Frisoni, G.; Scandola, M.; Rimelen, M.; Lips, D.; Ruffiex, K.; Wintermantel, E. Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Polym. Sci. A Polym. Chem. 2003, 90, 1731–1738. [Google Scholar] [CrossRef]
- López-Rodríguez, N.; López-Arraiza, A.; Meaurio, E.; Sarasua, J.R. Crystallization, morphology, and mechanical behavior of polylactide/poly(ɛ-caprolactone) blends. Polym. Eng. Sci. 2006, 46, 1299–1308. [Google Scholar] [CrossRef]
- Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S.H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 1987, 20, 904–906. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikada, Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer 1999, 40, 6699–6708. [Google Scholar] [CrossRef]
- López-Rodríguez, N.; Martínez de Arenaza, I.; Meaurio, E.; Sarasua, J.R. Improvement of toughness by stereocomplex crystal formation in optically pure polylactides of high molecular weight. J. Mech. Behav. Biomed. Mater. 2014, 37, 219–225. [Google Scholar] [CrossRef]
- Stevels, W.M.; Ankone, M.J.K.; Dijksta, P.J.; Feijen, J. Stereocomplex formation in ABA triblock copolymers of poly(lactide) (A) and poly(ethylene glycol) (B). Macromol. Chem. Phys. 1995, 25, 3687–3694. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tan, B.H.; Lin, T.; He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22–72. [Google Scholar] [CrossRef]
- Jing, Z.; Shi, X.; Zhang, G.; Lei, R. Investigation of poly(lactide) stereocomplexation between linear poly(L -lactide) and PDLA-PEG-PDLA tri-block copolymer. Polym. Int. 2015, 64, 1399–1407. [Google Scholar] [CrossRef]
- Song, Y.; Wang, D.; Jiang, N.; Gan, Z. Role of PEG Segment in Stereocomplex Crystallization for PLLA/PDLA- b -PEG- b -PDLA Blends. ACS Sustain. Chem. Eng. 2015, 3, 1492–1500. [Google Scholar] [CrossRef]
- Rathi, S.; Chen, X.; Coughlin, E.B.; Hsu, S.L.; Golub, C.S.; Tzivanis, M.J. Toughening semicrystalline poly(lactic acid) by morphology alteration. Polymer 2011, 52, 4184–4188. [Google Scholar] [CrossRef]
- Rathi, S.; Coughlin, E.B.; Hsu, S.L.; Golub, C.S.; Ling, G.H.; Tzivanis, M.J. Effect of midblock on the morphology and properties of blends of ABA triblock copolymers of PDLA-mid-block-PDLA with PLLA. Polymer 2012, 53, 3008–3016. [Google Scholar] [CrossRef]
- Small, P.A. Some factors affecting the solubility of polymers. J. Appl. Chem. 1953, 3, 71–80. [Google Scholar] [CrossRef]
- Van Krevelen, D.W. Properties of Polymers. Their Correlation with Chemical Structure. In Their Numerial Estimation and Prediction from Additive Group Contributions, 3rd ed.; Elsevier: Oxford, UK, 1997; ISBN 9780444596123. [Google Scholar]
- Mark, J.E. Physical Properties of Polymers Handbook, 2nd ed.; Springer: New York, NY, USA, 2007; ISBN 978-0-387-31235-4. [Google Scholar]
- Flory, P.J. Thermodynamics of High Polymer Solutions. J. Chem. Phys. 1942, 10, 51–61. [Google Scholar] [CrossRef]
- Izuka, A.; Winter, H.H.; Hashimoto, T. Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules 1992, 25, 2422–2428. [Google Scholar] [CrossRef]
- Fox, T.G. Influence of diluent and copolymer composition on the glass transition temperature of a poly-mer system. Bull. Am. Phys. Soc. 1956, 1, 123. [Google Scholar]
- Vilay, V.; Mariatti, M.; Ahmad, Z.; Pasomsouk, K.; Todo, M. Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly(L-lactide)/poly(ε-caprolactone) and poly(L-lactide)/poly(butylene succinate- co -L-lactate) polymeric blends. J. Appl. Polym. Sci. 2009, 114, 1784–1792. [Google Scholar] [CrossRef]
- Semba, T.; Kitagawa, K.; Ishiaku, U.S.; Hamada, H. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J. Appl. Polym. Sci. 2006, 101, 1816–1825. [Google Scholar] [CrossRef]
- Auras, R.; Lim, L.-T.; Selke, S.E.M.; Tsuji, H. Polylacticacid; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Rosa, D.S.; Guedes, C.G.F.; Bardi, M.A.G. Evaluation of thermal, mechanical and morphological properties of PCL/CA and PCL/CA/PE-g-GMA blends. Polym. Test. 2007, 26, 209–215. [Google Scholar] [CrossRef]
- Elias, H.G. Makromoleküle: Chemische Struktur und Synthesen; Wiley VCH: Weinheim, Germany, 1999. [Google Scholar]
- Purnama, P.; Kim, S.H. Stereocomplex Formation of High-Molecular-Weight Polylactide Using Supercritical Fluid. Macromolecules 2010, 43, 1137–1142. [Google Scholar] [CrossRef]
δSmall | δHoy | δvanKrevelen | δØ | Tg1 | |
---|---|---|---|---|---|
PCL | 19.08 | 19.45 | 18.29 | 18.94 | −59.0 |
PLLA | 19.86 | 20.55 | 18.86 | 19.75 | 58.0 |
(J/g) | Tcc PLLA a (°C) | (J/g) | Tm1, PLLAa (°C) | XC,PLLA a (%) | (J/g) | Tc, PCL b (°C) | XC,PCL b (%) | Tg, Blend b (°C) | Tg,PCL Oligomer c (°C) | |
---|---|---|---|---|---|---|---|---|---|---|
PLLA | 20.0 | 124.7 | 20.0 | 147.1 | 0 | - | - | - | 58,0 | - |
PCL_830 | 25.7 | 105.6 | 25.8 | 139.8 | 0.1 | 0.2 | 18.0 | 1.4 | 44.3 | −59.0 |
PCL_2200 | 1.3 | 120.6 | 2.1 | 145.0 | 0.8 | 6.6 | 12.3 | 47.3 | 50.4 | −58.7 |
PCL_3000 | 10.1 | 118.0 | 11.7 | 144.3 | 1.5 | 6.7 | 23.4 | 48.0 | 50.9 | −58.5 |
PCL_5200 | 21.0 | 116.4 | 21..5 | 147.8 | 0.5 | 6.8 | 35.7 | 48.7 | 51.4 | −59.6 |
PCL_5800 | 20.1 | 115.9 | 21.0 | 147.5 | 0.9 | 6.7 | 34.5 | 48.0 | 51.8 | −59.0 |
PCL_6000 | 3.8 | 118.1 | 4.8 | 144.1 | 1.0 | 6.9 | 35.2 | 49.5 | 51.6 | −59.3 |
PCL_7400 | 1.1 | 121.4 | 2.0 | 145.1 | 0.9 | 7.2 | 33.3 | 51.6 | 51.9 | −59.8 |
PCL_9800 | 8.4 | 117.5 | 10.2 | 144.4 | 1.7 | 7.4 | 22.3 | 53.0 | 51.3 | −59.4 |
PLLA Blend with | PDLA, Copolymer (%) | PCL, Copolymer (%) | Copolymer, Blend (%) |
---|---|---|---|
PDLA5000_PCL830 | 72 | 28 | 31 |
PDLA3500_PCL2200 | 55 | 45 | 24 |
PDLA7000_PCL3000 | 59 | 41 | 25 |
PDLA3800_PCL5200 | 47 | 53 | 19 |
PDLA2400_PCL5800 | 41 | 59 | 15 |
PDLA1200_PCL6000 | 18 | 82 | 12 |
PDLA210_PCL7400 | 24 | 76 | 15 |
PDLA900_PCL9800 | 20 | 80 | 13 |
PLLA Blend with | ΔHcc,PLLA a (J/g) | ΔHm1, PLLA a (J/g) | Tm1,PLLA a (°C) | ΔHm2, PLAsc a (J/g) | Tm2,PLAsc a (°C) | ΔHm0, mix (J/g) | XC,PLA a (%) | ΔHm,PCL b (J/g) | XC,PCL b (%) | Tg,Blend b (°C) |
---|---|---|---|---|---|---|---|---|---|---|
PDLA5000_PCL830 | 7.0 | 0.5 | 142.4 | 17.4 | 193 | 105.8 | 10.3 | 0.2 | 1.4 | 44.2 |
PDLA3500_ | 2.5 | 6.6 | 147.0 | 27.3 | 195 | 97.0 | 32.4 | 3.1 | 22.2 | 45.8 |
PCL2200 | ||||||||||
PDLA7000_ | 10.1 | 9.8 | 143.5 | 24.7 | 205 | 98.5 | 24.8 | 3.5 | 25.1 | 45.5 |
PCL3000 | ||||||||||
PDLA3800_ | 10.1 | 10.7 | 142.7 | 15.9 | 194 | 92.9 | 17.8 | 4.0 | 28.7 | 48.0 |
PCL5200 | ||||||||||
PDLA2400_ | 4.9 | 4.9 | 143.0 | 3.5 | 186 | 90.2 | 3.9 | 5.7 | 40.9 | 49.6 |
PCL5800 | ||||||||||
PDLA1200_ | - | 0.5 | 146.0 | - | - | 86.3 | 0.5 | 6.4 | 45.9 | 51.1 |
PCL6000 | ||||||||||
PDLA210_PCL7400 | - | 0.5 | 147.0 | - | - | 87.7 | 0.5 | 9.8 | 70.3 | 51.2 |
PDLA900_PCL9800 | 3.7 | 3.8 | 147.0 | - | - | 86.8 | 0.1 | 7.1 | 50.9 | 51.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weidner, E.; Kabasci, S.; Kopitzky, R.; Mörbitz, P. Thermal and Morphological Properties of Poly(L-Lactic Acid)/Poly(D-Lactic Acid)-B-Polycaprolactone Diblock Copolymer Blends. Materials 2020, 13, 2550. https://doi.org/10.3390/ma13112550
Weidner E, Kabasci S, Kopitzky R, Mörbitz P. Thermal and Morphological Properties of Poly(L-Lactic Acid)/Poly(D-Lactic Acid)-B-Polycaprolactone Diblock Copolymer Blends. Materials. 2020; 13(11):2550. https://doi.org/10.3390/ma13112550
Chicago/Turabian StyleWeidner, Eckhard, Stephan Kabasci, Rodion Kopitzky, and Philip Mörbitz. 2020. "Thermal and Morphological Properties of Poly(L-Lactic Acid)/Poly(D-Lactic Acid)-B-Polycaprolactone Diblock Copolymer Blends" Materials 13, no. 11: 2550. https://doi.org/10.3390/ma13112550
APA StyleWeidner, E., Kabasci, S., Kopitzky, R., & Mörbitz, P. (2020). Thermal and Morphological Properties of Poly(L-Lactic Acid)/Poly(D-Lactic Acid)-B-Polycaprolactone Diblock Copolymer Blends. Materials, 13(11), 2550. https://doi.org/10.3390/ma13112550