Shaking Table Test of U-Shaped Walls Made of Fiber-Reinforced Foamed Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fiber-Reinforced Foam Concrete
2.2. Mechanical Properties of Foamed Concrete
2.3. U-Shaped Wall Specimens
2.4. Shaking Table Test and Instrumentation
2.5. Numerical Simulations
3. Results and Discussion
3.1. Experimental Results
3.2. Numerical Results
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maccarini, H.; Vasconcelos, G.; Rodrigues, H.; Rodrigues, H.; Lourenço, P.B. Out-of-plane behavior of stone masonry walls: Experimental and numerical analysis. Constr. Build. Mater. 2018, 179, 430–452. [Google Scholar] [CrossRef]
- Park, J.; Towashiraporn, P.; Craig, J.I.; Goodno, B.J. Seismic fragility analysis of low-rise unreinforced masonry structures. Eng. Struct. 2009, 31, 125–137. [Google Scholar] [CrossRef]
- Bruneau, M. State-of-the-art report on seismic performance of unreinforced masonry buildings. J. Struct. Eng. 1994, 120, 230–251. [Google Scholar] [CrossRef]
- Ortega, J.; Vasconcelos, G.; Rodrigues, H.; Correia, M.; Lourenço, P.B. Traditional earthquake resistant techniques for vernacular architecture and local seismic cultures: A literature review. J. Cult. Heritage 2017, 27, 181–196. [Google Scholar] [CrossRef]
- Poole, D.; Renique, G. Cashing in on the quakes. NACLA Rep. Am. 2017, 49, 387–390. [Google Scholar] [CrossRef]
- Godínez, E.; Tena, A.; Archundia, H.; Gómez, A.; Ruíz, R.; Escamilla, J. Daños en viviendas localizadas en el sureste de méxico ocasionados por el sismo de tehuantepec del 7 de septiembre de 2017, mw = 8.2. Rev. Int. Ing. Estruct. 2019, 24, 223–258. [Google Scholar]
- Singh, S.K.; Ordaz, M.; Alcântara, L.; Shapiro, N.; Kostoglodov, V.; Pacheco, J.F.; Alcocer, S.; Gutiérrez, C.; Quaas, R.; Mikumo, T.; et al. The oaxaca earthquake of 30 september 1999 (mw = 7.5): A normal-faulting event in the subducted cocos plate. Seism. Res. Lett. 2000, 71, 67–78. [Google Scholar] [CrossRef]
- Banadaki, H.M.; Morshed, R.; Eslami, A. In-plane cyclic performance of adobe walls retrofitted with near-surface-mounted steel rebars. Eng. Struct. 2019, 194, 106–119. [Google Scholar] [CrossRef]
- Liu, C.; Nong, X.; Zhang, F.; Quan, Z.; Bai, G.-L. Experimental study on the seismic performance of recycled concrete hollow block masonry walls. Appl. Sci. 2019, 9, 4336. [Google Scholar] [CrossRef] [Green Version]
- Betti, M.; Galano, L.; Vignoli, A. Time-history seismic analysis of masonry buildings: A comparison between two non-linear modelling approaches. Buildings 2015, 5, 597–621. [Google Scholar] [CrossRef]
- Alshawa, O.; De Felice, G.; Mauro, A.; Sorrentino, L. Out-of-plane seismic behaviour of rocking masonry walls. Earthq. Eng. Struct. Dyn. 2011, 41, 949–968. [Google Scholar] [CrossRef]
- Saleem, M.U.; Numada, M.; Amin, M.N.; Meguro, K. Shake table tests on frp retrofitted masonry building models. J. Compos. Constr. 2016, 20, 04016031. [Google Scholar] [CrossRef]
- Chavez, M.; Meli, R. Shaking table testing and numerical simulation of the seismic response of a typical Mexican colonial temple. Earthq. Eng. Struct. Dyn. 2011, 41, 233–253. [Google Scholar] [CrossRef]
- Illampas, R.; Charmpis, D.C.; Ioannou, I. Laboratory testing and finite element simulation of the structural response of an adobe masonry building under horizontal loading. Eng. Struct. 2014, 80, 362–376. [Google Scholar] [CrossRef]
- Nezhad, R.S.; Kabir, M.Z.; Banazadeh, M. Shaking table test of fibre reinforced masonry walls under out-of-plane loading. Constr. Build. Mater. 2016, 120, 89–103. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, D.; Sheng, Y.; Garrity, S.W.; Xu, L. Numerical modelling of FRP-reinforced masonry walls under in-plane seismic loading. Constr. Build. Mater. 2017, 134, 649–663. [Google Scholar] [CrossRef]
- Domínguez-Santos, D.; Ballesteros-Pérez, P.; Mora-Meliá, D. Structural resistance of reinforced concrete buildings in areas of moderate seismicity and assessment of strategies for structural improvement. Buildings 2017, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Lemos, J.V. Discrete element modeling of the seismic behavior of masonry construction. Buildings 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Afrouz, S.G.; Razavi, M.R.; Pourkand, A.; Wilson, C.M.D. Dynamic displacement of an aluminum frame using close range photogrammetry. Buildings 2019, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Borah, B.; Singhal, V.; Kaushik, H.B. Sustainable housing using confined masonry buildings. SN Appl. Sci. 2019, 1, 983. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, E.; Pascale, G. Combined strengthening techniques to improve the out-of-plane performance of masonry walls. Materials 2019, 12, 1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciarretta, F. Seismic retrofitting of traditional masonry with pultruded frp profiles. Appl. Sci. 2020, 10, 2489. [Google Scholar] [CrossRef] [Green Version]
- Corradi, M.; Castori, G.; Sisti, R.; Borri, A.; Pesce, G.L. Repair of block masonry panels with cfrp sheets. Materials 2019, 12, 2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, K.; Sui, Z.-A.; Jiang, J.; Zhou, X. Experimental study on seismic behavior of masonry walls strengthened by reinforced mortar cross strips. Sustainability 2019, 11, 4866. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Santos, D.; Mora-Meliá, D.; Pincheira, G.; Ballesteros-Pérez, P.; Retamal-Bravo, C. Mechanical properties and seismic performance of wood-concrete composite blocks for building construction. Materials 2019, 12, 1500. [Google Scholar] [CrossRef] [Green Version]
- Tomaževič, M.; Gams, M. Shaking table study and modelling of seismic behaviour of confined AAC masonry buildings. Bull. Earthq. Eng. 2011, 10, 863–893. [Google Scholar] [CrossRef]
- Tomaževič, M.; Gams, M. Seismic behaviour of confined autoclaved aerated concrete masonry buildings: A shaking table study. Mauerwerk 2010, 14, 153–160. [Google Scholar] [CrossRef]
- Dunn, T.P.; Van Zijl, G.; Van Rooyen, A.S. Investigating a reinforced lightweight foamed concrete walling system for low-rise residential buildings in moderate seismic regions. J. Build. Eng. 2018, 20, 663–670. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Nambiar, E.K.; Ranjani, G.I.S. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Sayadi, A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 2016, 112, 716–724. [Google Scholar] [CrossRef]
- Amran, Y.M.; Farzadnia, N.; Ali, A.A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Constr. Build. Mater. 2019, 198, 479–493. [Google Scholar] [CrossRef]
- Mahzabin, M.S.; Hock, L.J.; Hossain, M.S.; Kang, L.S. The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Constr. Build. Mater. 2018, 178, 518–528. [Google Scholar] [CrossRef]
- Jones, R.; McCarthy, A. Preliminary views on the potential of foamed concrete as a structural material. Mag. Concr. Res. 2005, 57, 21–31. [Google Scholar] [CrossRef]
- Flores-Johnson, E.A.; Li, Q.M. Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces. Compos. Struct. 2012, 94, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Iwashita, K. Earthquake resistance of adobe reinforced by low cost traditional materials. J. Nat. Disaster Sci. 2010, 32, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ramezanianpour, A.; Esmaeili, M.; Ghahari, S.A.; Najafi, M. Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Constr. Build. Mater. 2013, 44, 411–418. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Ghahari, S.A.; Khazaei, A. Feasibility Study on Production and Sustainability of Poly Propylene Fiber Reinforced Concrete Ties Based On a Value Engineering Survey. In Proceedings of the 3rd International Conference on Sustainable Construction Materials and Technologies (SCMT3), Kyoto, Japan, 18–21 August 2013. [Google Scholar]
- Roslan, A.F.; Awang, H.; Mydin, A.O. Effects of various additives on drying shrinkage, compressive and flexural strength of lightweight foamed concrete (lfc). Adv. Mater. Res. 2012, 626, 594–604. [Google Scholar] [CrossRef]
- Kearsley, E.; Visagie, M. Properties of foamed concrete as influenced by air-void parameters. Concr. Beton 2002, 101, 8–14. [Google Scholar]
- Hoyos, C.G.; Zuluaga, R.; Gañán, P.; Pique, T.M.; Vazquez, A. Cellulose nanofibrils extracted from fique fibers as bio-based cement additive. J. Clean. Prod. 2019, 235, 1540–1548. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Banthia, N. Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 2016, 68, 96–108. [Google Scholar] [CrossRef]
- Mydin, A.O.; Noordin, N.M.; Utaberta, N.; Yunos, M.Y.M.; Segeranazan, S. Physical properties of foamed concrete incorporating coconut fibre. J. Teknol. 2016, 78, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Z.; Fan, Z.; Gu, J. Study on properties of sisal fiber modified foamed concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 744, 012042. [Google Scholar] [CrossRef]
- Flores-Johnson, E.A.; Yan, Y.Z.; Carrillo, J.G.; Gonzalez-Chi, P.I.; Herrera-Franco, P.J.; Li, Q.M. Mechanical characterization of foamed concrete reinforced with natural fibre. Mater. Res. Proc. 2018, 7, 1–6. [Google Scholar] [CrossRef]
- Valadez-Gonzalez, A.; Cervantes-Uc, J.; Olayo, R.; Franco, P.J.H. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos. Part B: Eng. 1999, 30, 309–320. [Google Scholar] [CrossRef]
- Kozłowski, M.; Kadela, M. Mechanical characterization of lightweight foamed concrete. Adv. Mater. Sci. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kadela, M.; Kozłowski, M. Foamed concrete layer as sub-structure of industrial concrete floor. Procedia Eng. 2016, 161, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Zafra Pinacho, D.; Gastéllum Alvarado, J.M. Catálogo de la vivienda vernácula en el estado de Oaxaca Caso: Distrito de Tlacolula. Estud. Sobre Conserv. Restaur. y Museol. 2015, 2, 167–181. Available online: https://www.revistas.inah.gob.mx/index.php/estudiosconservacion/article/view/5474/6093 (accessed on 16 May 2020).
- De Leo, A. Catálogo de Arquitectura Vernácula de Oaxaca, 1st ed.; Secretaría de las Culturas y Artes de Oaxaca: Oaxaca, Mexico, 2015. [Google Scholar]
- QUANSER. Shake Table II Data Sheet, Quanser Inc., Markham, Canada. 2019. Available online: https://www.quanser.com/products/shake-table-ii/ (accessed on 20 April 2020).
- Ali, M.; Briet, R.; Chouw, N. Dynamic response of mortar-free interlocking structures. Constr. Build. Mater. 2013, 42, 168–189. [Google Scholar] [CrossRef]
- ABAQUS. Abaqus Analysis User’s Guide, version 2016; Dassault Systèmes: Providence, RI, USA, 2015. [Google Scholar]
- Chiacchiarelli, L.M.; Cerrutti, P.; Flores-Johnson, E.A. Compressive behavior of rigid polyurethane foams nanostructured with bacterial nanocellulose at low and intermediate strain rates. J. Appl. Polym. Sci. 2019, 137, 48701. [Google Scholar] [CrossRef]
- Amarnath, Y.; Ramachandrudu, C. Properties of Foamed Concrete with Sisal Fibre. In Proceedings of the 9th International Concrete Conference 2016: Environment, Efficiency and Economic Challenges for Concrete, University of Dundee, Dundee, UK, 4–6 July 2016. [Google Scholar]
- Ahmad, W.; Farooq, S.H.; Usman, M.; Khan, M.; Ahmad, A.; Aslam, F.; Al Yousef, R.; Alabduljabbar, H.; Sufian, M. Effect of coconut fiber length and content on properties of high strength concrete. Materials 2020, 13, 1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szeląg, M.; Szeląg, M. Evaluation of cracking patterns of cement paste containing polypropylene fibers. Compos. Struct. 2019, 220, 402–411. [Google Scholar] [CrossRef]
- Setti, F.; Ezziane, K.; Setti, B. Investigation of mechanical characteristics and specimen size effect of steel fibers reinforced concrete. J. Adhes. Sci. Technol. 2020, 1–16. [Google Scholar] [CrossRef]
- Carriço, A.; Bogas, J.A.; Hawreen, A.; Guedes, M. Durability of multi-walled carbon nanotube reinforced concrete. Constr. Build. Mater. 2018, 164, 121–133. [Google Scholar] [CrossRef]
- Kakooei, S.; Akil, H.M.; Jamshidi, M.; Rouhi, J. The effects of polypropylene fibers on the properties of reinforced concrete structures. Constr. Build. Mater. 2012, 27, 73–77. [Google Scholar] [CrossRef]
- Vazquez-Rodriguez, J.; Flores-Johnson, E.A.; Herrera-Franco, P.J.; Gonzalez-Chi, P.I. Photoelastic and numerical analyses of the stress distribution around a fiber in a pull-out test for a thermoplastic fiber/epoxy resin composite. Polym. Compos. 2017, 39, E2397–E2406. [Google Scholar] [CrossRef]
- Colombo, I.G.; Colombo, M.; Di Prisco, M.; Pouyaei, F. Analytical and numerical prediction of the bending behaviour of textile reinforced concrete sandwich beams. J. Build. Eng. 2018, 17, 183–195. [Google Scholar] [CrossRef] [Green Version]
Properties | PFC | FRFC |
---|---|---|
Density (kg/m3) | 895.6 ± 4.1 | 930.3 ± 4.9 |
Compressive elastic modulus (MPa) | 454.5 ± 36.5 | 461.2 ± 29.5 |
Compressive strength (MPa) | 4.06 ± 0.25 | 4.16 ± 0.31 |
Compressive yield strain (mm/mm) | 0.014 ± 0.001 | 0.015 ± 0.001 |
Tensile strength (MPa) | 0.35 ± 0.02 | 0.48 ± 0.05 |
Tensile yield strain (mm/mm) | 0.023 ± 0.010 | 0.027 ± 0.009 |
U-Shaped Wall Specimen | Time of First Visible Crack on the First Flange (s) | Time of Collapse of the First Flange (s) | Time of First Visible Crack on the Second Flange (s) | Time of Collapse of the Second Flange (s) | Duration of the Test (s) |
---|---|---|---|---|---|
PFC #1 | 3.01 (RF) 1 | 3.93 (RF) | - | - | 6.28 3 |
PFC #2 | 2.58 (RF) | 3.76 (RF) | 3.80 (LF) | 6.63 (LF) | 9.96 |
PFC #3 | 6.21 (LF) 2 | 6.48 (LF) | 6.92 (RF) | 7.43 (RF) | 9.35 |
FRFC #1 | 9.50 (RF) | 13.09 (RF) | - | - | 39.25 |
FRFC #2 | 41.57 (LF) | 43.15 (LF) | - | - | 51.16 |
FRFC #3 | 2.44 (RF) | 6.45 (RF) | 15.82 (LF) | 16.62 (LF) | 17.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Johnson, E.A.; Company-Rodríguez, B.A.; Koh-Dzul, J.F.; Carrillo, J.G. Shaking Table Test of U-Shaped Walls Made of Fiber-Reinforced Foamed Concrete. Materials 2020, 13, 2534. https://doi.org/10.3390/ma13112534
Flores-Johnson EA, Company-Rodríguez BA, Koh-Dzul JF, Carrillo JG. Shaking Table Test of U-Shaped Walls Made of Fiber-Reinforced Foamed Concrete. Materials. 2020; 13(11):2534. https://doi.org/10.3390/ma13112534
Chicago/Turabian StyleFlores-Johnson, Emmanuel A., Brenda A. Company-Rodríguez, J. Francisco Koh-Dzul, and Jose G. Carrillo. 2020. "Shaking Table Test of U-Shaped Walls Made of Fiber-Reinforced Foamed Concrete" Materials 13, no. 11: 2534. https://doi.org/10.3390/ma13112534
APA StyleFlores-Johnson, E. A., Company-Rodríguez, B. A., Koh-Dzul, J. F., & Carrillo, J. G. (2020). Shaking Table Test of U-Shaped Walls Made of Fiber-Reinforced Foamed Concrete. Materials, 13(11), 2534. https://doi.org/10.3390/ma13112534