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Abstract: Discrete element models are a powerful tool for the analysis of masonry, given their
ability to represent the discontinuous nature of these structures, and to simulate the most common
deformation and failure modes. In particular, discrete elements allow the assessment of the seismic
behavior of masonry construction, using either pushover analysis or time domain dynamic analysis.
The fundamental concepts of discrete elements are concisely presented, stressing the issues related
to masonry modeling. Methods for generation of block models are discussed, with some examples
for the case of irregular stone masonry walls. A discrete element analysis of a shaking table test
performed on a traditional stone masonry house is discussed, as a demonstration of the capabilities
of these models. Practical application issues are examined, namely the computational requirements
for dynamic analysis.
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1. Introduction

The safety assessment of masonry structures under seismic loads demands numerical models
capable of representing appropriately the response and the failure modes observed during earthquakes.
Laboratory testing, namely using shaking tables, offers a controlled environment in which the main
variables can be more accurately measured, providing important data for the validation of numerical
models. A wide range of models is available nowadays, each one with its specific strengths and a
preferred range of applications [1]. Discrete element (DE) models, involving the representation of
masonry by a system of interacting distinct blocks, are one of the numerical tools particularly suited
for the simulation of phenomena such as sliding and separation along joints, which may induce
progressive structural damage and collapse [2].

Many applications of DE models to masonry structures under seismic loading have been reported
in the literature. Early works addressed mainly the study of historical monuments involving systems
with a relatively small number of blocks [3]. Presently, it is possible to address much more complex
structures, composed of a large number of blocks, and assess their seismic capacity by means of either
pushover methods [4] or dynamic analysis [5]. DE models using these alternative analysis techniques,
based on static or dynamic representations of the seismic action, have been applied in the simulation
of lab experiments of masonry walls under out-of-plane loading [6,7]. The failure modes observed in
lab tests involving in-plane cyclic loading of masonry panels have also been effectively reproduced by
these models [8].

In the literature, several discontinuum modeling techniques have been developed for masonry
analysis, which share many of the fundamental concepts of DE models. For example, the rigid body
and spring model [9] involves the representation of masonry by a system of rigid blocks, which
do not necessarily correspond to the masonry units, as a homogenization procedure is invoked to
obtain the contact properties. The applied element method [10,11] also concentrates the deformation
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at the interfaces between rigid blocks, which are discretized into a fine mesh of contact springs
with nonlinear behavior. The fiber contact element method [12] is a related approach, involving the
definition of contact properties from a system of fibers that connect adjacent blocks. Within a finite
element framework, models based on rigid elements and nonlinear joints have also been advanced for
masonry structures, namely resorting to limit analysis concepts [13,14].

In the present article, the fundamental concepts of discrete element models are concisely discussed
in the next section, including computational efficiency issues. The generation of models to represent
traditional stone wall structures is then addressed. Two different methods of creating irregular
assemblies are described, one based on a Voronoi tessellation and the other on overlaying irregular
courses. The responses of models generated with different random geometric parameters are compared.
The issue of validation of the numerical models is examined, with particular reference to the results of
a shaking table test of a physical model of a traditional stone masonry house, for which a simplified
block representation was created. Finally, some concluding remarks are presented.

2. Essential Concepts in Discrete Element Modeling

2.1. Block Representation

Discrete element models provide a discontinuous idealization of masonry (commonly designated
as micro-modeling), in which the units and the joints are explicitly represented [1]. There are multiple
DE formulations and codes available nowadays, using different terminologies, but they all share
common underlying concepts [2]. The units are typically represented by polygonal or polyhedral
shapes. The simplest models assume the blocks to be rigid bodies, with all the system deformation
placed in the joints. This is a good assumption for hard stone blocks, but it also simplifies the analysis
of large structures. Deformable blocks provide a more versatile framework. The block deformation
is typically modelled by discretizing it internally into a finite element mesh. The element material is
assumed elastic in most cases, but nonlinear constitutive models may also be assigned to the elements.
For many problems in which the inter-block movements are dominant, the use of rigid blocks provides
results practically equivalent to coarse-mesh deformable blocks. A comparative study for out-of-plane
failure of walls is presented in [4].

2.2. Contact between Blocks

Most discrete element models adopt a simplified representation of the contact between blocks
based on sets of point contacts. Therefore, no joint or interface elements are defined, contrary to finite
element micro-models. The point contact approach is more versatile and facilitates the analysis in the
large displacement range, as the system connectivity changes, and the type, location, and orientation
of contacts need to be periodically updated. The drawback is that more contact points are required to
achieve an accurate contact stress distribution.

The point contact approach assumes that the stress at a contact point is a function of the relative
displacement of the two blocks at that point. The contact points are typically placed at vertex–face
or edge–edge interactions. For deformable blocks, additional contact points are created for the nodal
points of the internal element mesh that fall on block boundaries. Block faces are typically discretized
into triangular facets, allowing contact areas to be assigned to each contact point, and therefore to
relate contact stresses and forces.

An example of contact representation in the code 3DEC [15] is shown in Figure 1. Two types of
elementary or point contacts may exist: vertex-to-face (VF) and edge-to-edge (EE). A contact point of
VF type is created where a vertex touches a face, while a contact point of EE type is located where two
edges intersect. Vertex-to-edge or vertex-to-vertex interactions are considered particular cases of the
VF type. The common case of face-to-face interaction between two blocks is represented by several
elementary contacts (Figure 1a). In this case, the sum of the areas of the point contacts equals the total
area of contact between the blocks. On the other hand, when the blocks interact by two intersecting
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edges, a case of a true point contact, then a single elementary contact exists. For practical purposes, a
true point interaction obviously has a finite stiffness, so a minimum contact area has to be defined,
typically a small fraction of the average contact area.
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Figure 1. Representation of block interactions by elementary point contacts of vertex-to-face type (VF)
and edge-to-edge type (EE): (a) Face-to-face block contact; (b) Edge-to-edge block contact.

2.3. Solution Methods and Computational Efficiency

The need to represent large displacement problems, demanding a progressive update of block
positions and contact point locations, has prompted many DE codes to avoid matrix solutions,
opting for explicit solution methods. For time domain analysis, the integration of the equations of
motion, of either the rigid blocks or the deformable block nodes, using a central-difference algorithm,
is a common choice. A feature of many DE codes is to use the same algorithm for static problems
by means of dynamic relaxation, which resorts to artificial damping to obtain convergence to the
equilibrium solution, or to a failure mechanism. Adaptive damping and mass scaling techniques may
be employed to improve the convergence rate of the relaxation procedure.

These explicit time stepping algorithms are quite effective for quasi-static analysis, namely in
the case of pushover methods for seismic assessment. For dynamic analysis, however, since mass
scaling cannot be applied, time steps are often small due to numerical stability requirements [9]. These
limitations may be particularly severe when the stiffness-proportional component of Rayleigh damping
is used. Therefore, run times can be demanding for large or complex models. The use of rigid blocks
often allows larger time steps, so they are frequently applied in dynamic analysis, as done in the study
described in Section 4.

2.4. Material Properties

The calibration of numerical models with experimental data is a key issue addressed by many
authors. For example, a consistent method has been developed to identify the parameters of a DE
model of a brick panel from laboratory tests [16]. More often, the calibration is based on empirical
trial-and-error procedures until an acceptable fit of key indicators is reached. Parametric studies are
invaluable to find the potential influence of material properties that display a significant uncertainty.

A model for dynamic analysis of existing structures under earthquake loading has to provide
realistic natural frequencies. Given the uncertainty in assigning the deformability to many types of
masonry, particularly for historical structures, in situ measurements by ambient vibration are important
to calibrate the model. For a rigid block representation, the model deformability is given by the joint
stiffness parameters, which can be estimated directly given the measured frequencies. For example,
even for simple stone masonry structures, the estimation of the displacements caused by an earthquake
has been shown to be much improved if the structural frequencies are correctly matched [17].
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3. Representation of the Block Structure

3.1. Modeling the Masonry Morphology

Devising a block system to represent modern brick masonry poses no difficulty, as only regular
shaped blocks are needed, and the procedure can be easily automated. In the case of existing stone
masonry structures, the model generation tasks are much more time consuming. We should keep in
mind that a numerical model is always an idealization of the real structure. In most cases, the analyst
selects a simplified structure in such a way that the key features of the block structure are reproduced.
Numerical experiments can be performed to evaluate the effect that a given simplification has on the
results, and if this is acceptable given the purpose of the analysis.

In the case of monumental structures composed of large stone blocks, a photo survey may allow
the definition of a numerical model that closely approximates the real morphology [18]. However,
in most DE models of stone masonry walls, an equivalent regular block system is employed, which
respects the typical values of block sizes and the amount of interlocking. In the next two sections,
the generation of block systems with irregular geometries is addressed for the case of masonry walls.
In order to simplify the issue, only the non-regular pattern visible in the wall plane is modelled.
In reality, wall cross-sections are often composed of two or three leaves of block and fill material. A 3D
representation of such structures is only feasible in small models of masonry components. When
2D models are employed to study the out-of-plane stability of such walls, however, it is possible to
achieve a much more detailed representation. De Felice [19] studied a three-leaf cross section of a
traditional wall, simulating closely the observed irregular block geometries, including the inner leaf of
rubble masonry.

3.2. Regular and Voronoi Block Patterns

In this study, the influence of the block pattern on the out-of-plane stability of stone masonry
walls was analyzed with DE models. The regular block pattern is shown in Figure 2a [20]. The wall
dimensions were 20 × 10 m, with 0.80 m thickness. A Young’s modulus of 2.5 GPa was assumed. As the
blocks were assumed rigid, the joint stiffnesses were calculated to reproduce the global deformability:
normal stiffness of 2.5 GPa/m, and shear stiffness of 1.0 GPa/m. For simplicity, a Coulomb friction
model was adopted for the joints, with a friction angle of 35◦, and no cohesion or tensile strength.
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Figure 2. Masonry wall models. (a) Regular block pattern; (b) Voronoi block pattern, showing failure
mode for out-of-plane loading.

The rigid base block and the two vertical columns were fixed in all directions (Figure 2a).
A distributed static load was applied to the wall in the out of plane direction, progressively increasing
until failure ensued. Therefore, the wall was simply supported by the vertical column blocks,
approximately simulating the effect of cross-walls, thus allowing the wall ends to rotate.
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In addition to the regular system of Figure 2a, Voronoi polygon patterns were randomly created,
with the same average block size as the regular mesh. One of these is shown in Figure 2b, at the stage
in which the out-of-plane failure mode developed.

Figure 3 compares the force-deformation curves and failure loads of the simulations with
3 different Voronoi block systems, with the same average size. It is interesting to observe that the three
randomly generated patterns displayed fairly similar behaviors. In the same graphic, 2 cases of regular
joints are shown. To be comparable with the Voronoi model, square blocks were used. The case of no
offset had continuous vertical joints. The loss of interlocking led to a lower strength. An offset of 0.1 m
clearly increased the initial stiffness and failure load, which was only marginally lower than the 0.5 m
offset case shown in Figure 2a. Cross-joint imbrication was critical, and the Voronoi pattern did not
create discontinuous joints, so it tended to underestimate the block interlocking.
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3.3. Irregular Coursed Block Patterns

The Voronoi pattern does not represent the typical coursed structure of traditional stone masonry,
being essentially an expeditious way to create randomly shaped block systems. An alternative
procedure was proposed to generate block patterns which displayed overlaid courses, but with
irregular horizontal joints, course height, and cross-joint imbrication [20], as shown in Figure 4.
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The procedure developed to obtain this block pattern involved the sequential generation of the
masonry courses using the five geometric parameters shown in Figure 5 [20]. Each one of these
parameters was defined in statistical terms by a mean value (m) and a deviation (d). The geometry of
the bed joints was composed of a series of segments according to the following parameters: spacing
(sm, sd); segment length (tm, td); and vertical deviation (hm, hd) from the mean trace. In the case shown,
for simplicity, a uniform distribution was assumed. For instance, the spacing of bed joints was given
by a random number in the interval [sm − sd, sm + sd]. The cross joint were introduced sequentially,
with each location defined by a spacing parameter (bm, bd), and an angle deviation from the vertical



Buildings 2019, 9, 43 6 of 11

(am, ad). The system in Figure 4 was created with the values: sm = 1 m, sd = 0.1 m; tm = 2 m; td = 1 m;
hm = 0; hd = 0.2 m; bm = 1.5 m; bd = 0.5 m; am = 0; and ad = 0.Buildings 2019, 9, 43 6 of 11 
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Figure 5. Definition of geometric parameters in block generation procedure.

The system in Figure 4 was one of three randomly created, and their force–displacement curves
are compared in Figure 6 with those from regular jointed models with rectangular blocks (Figure 2a).
The 3 irregular patterns displayed failure loads in the same range, which were also close to the case of
the regular pattern with the smallest offset (0.1 m), and well above the curve for the continuous cross
joints. It should be noted that the regular block failure loads in this figure, with rectangular shapes of
ratio 2:1, were higher than the ones in Figure 3, which corresponded to square blocks.
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4. DEM Analysis of a Shaking Table Test of a Stone Masonry Model

4.1. Experimental study

Shake table testing provides comprehensive data on the behavior of masonry structures under
intense dynamic loading, which is invaluable for the validation of numerical codes. In the framework
of the 9th International Masonry Conference, which took place in Guimarães, a comparative study of
different numerical models was undertaken, involving blind predictions and a posteriori analyses of
shake table tests on brick and stone masonry models performed at LNEC [21,22]. The stone masonry
structure, shown in Figure 7, consisted of a main gabled wall, with a door opening, and return walls
on both ends. An opening was placed in one of the return walls, resulting in an asymmetry, inducing
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torsional movements. The walls, built of irregular stones, each had a thickness of 0.5 m. Unidirectional
ground motion was applied in the out-of-plane direction of the main wall. Various finite element and
discrete element models were employed in the comparative study [22]. The main issues involved in
the DE representation of the experiment, and the lesson learned, are discussed in the following section,
with particular reference to the 3DEC rigid block analyses [23]. Two other types of DE models were
also included in the study: a combined finite–discrete element approach [24]; and a macro-element
formulation [25].
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4.2. DE Representation of the Stone Masonry Test Model

DE allows various levels of detail to be included in the representation of a masonry structure.
It would be possible to devise a model in which each real stone would be simulated, adopting a
more or less complex geometry. However, in the analyses of the stone masonry specimen performed
with 3DEC, a simplified representation was chosen [23]. The aim was to follow a model generation
methodology applicable to the practical study of a real structure, where the real block shapes are
known. Only the main pattern of the stone arrangement was attempted, respecting the average unit
dimensions, but assuming horizontal joints, and vertical joint offsets of the order of the real ones,
as shown in Figure 8. Furthermore, a single block was placed across the wall thickness, unlike the
two-leaf walls of the test structure. The model had about 200 brick-shaped blocks, which were assumed
to behave as rigid bodies, each with 6 degrees-of-freedom.
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4.3. Material Properties

Consistent with the aim of applying the simplest modeling assumptions, the joints were assigned
the standard Mohr–Coulomb model with brittle behavior available in 3DEC [15]. Joint deformability
is characterized by normal and shear stiffnesses, and joint strength by the friction angle, cohesion,
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and tensile strength. If either tensile or shear failure take place, the cohesion and tensile strengths are
both set to zero, while the friction angle is unchanged.

In a rigid block model, all the deformation is concentrated at the joints, so the joint stiffness
parameters have to be selected to reproduce the masonry elastic moduli. For the blind prediction
before the test, a Young’s modulus of 2077 MPa given by wallette tests was the available information.
The estimation of the normal and shear joint stiffnesses was based on an average spacing of 0.3 m for
horizontal joints and 0.5 m for the vertical ones [23]. However, for the post-diction analyses, the natural
frequencies measured experimentally were provided. In order to match these, the joint stiffnesses had
to be reduced by a factor of 2, implying that the tested masonry walls were softer than the wallettes.

The initial joint strength parameters in the prediction runs were based on the diagonal compression
of the wallettes. Assuming a friction angle of 30◦, a cohesion of 0.32 MPa was estimated, and the
tensile strength was taken as half of the cohesion. In the post-test analyses, the same cohesive and
tensile strengths were used, but the friction angle was increased to 35◦, in order to obtain a better fit of
the experimental response. The higher friction possibly accounted for the joint irregularity joints in the
physical model. For the base joint, between model and shaking table, where no slip occurred, a friction
angle of 45◦ was adopted.

4.4. Pushover and Dynamic Analyses

Prior to the dynamic runs, a quasi-static analysis was performed with the DE model to obtain
the failure load in pushover-type tests. First, the gravity load was applied, with the base block fixed
in all directions. To perform the pushover analysis, a static horizontal load, proportional to the block
weight, was applied to all the blocks, in the out-of-plane direction of the façade. The horizontal load
was increased in increments corresponding to a mass force of 0.05 g, until collapse. The failure mode,
shown in Figure 9a, agreed quite well with the deformation pattern observed experimentally, involving
the out-of-plane rotation of the façade wall, while the side wall with the opening broke into a four
component mechanism (Figure 7c). The pushover collapse load was 0.65 g, well below the 1.05 g
record that led the model to near-collapse in the shake table tests. In any case, the rather simplified
geometry of the DE rigid block structure appeared to be able to represent the key features of the
experimental behavior.
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For the dynamic runs, the model was first brought to equilibrium under the gravity load. Then,
a time domain dynamic analysis was performed. The model was loaded by applying at the base
block the dynamic records measured in the shake table during the tests. Rayleigh damping was
employed, including both the mass- and stiffness-proportional components, with a value of 2% of
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critical damping at the fundamental frequency of 10 Hz. This value was selected to improve the
simulation of the final test with the strongest motion, which caused widespread damage. Thus, in the
early test stages, with lower input, the numerical model was expected to display higher response peaks
than the experiment. It should be noted that in the DE model, further energy dissipation took place
by friction on the sliding joints. The typical time step in the dynamic runs, determined by the code
for reasons of numerical stability, was in the order of 6 × 10–6 s. The use of the stiffness-proportional
component of Rayleigh damping was mostly responsible for such a small value of the time step.

The model configuration after the last dynamic stage, with a peak acceleration of 1.05 g, is depicted
in Figure 9b, showing a clear resemblance with the observed behavior (Figure 7c). The peak
displacements at the monitored points of the structure were also generally in reasonable agreement
with the experiment [23]. Naturally, we cannot expect to match the details of the time response curves.

In conclusion, the reported analysis was based on a rather simplified block model. It is certainly
possible to improve the geometrical resemblance of the 3DEC representation, namely including the
two-leaf wall structure, or the horizontal joint non-planarity, as discussed above. In addition, the simple
joint constitutive model adopted does not allow the representation of the progressive accumulation of
damage in the successive tests. It should be noted, however, that data to support those refinements is
not usually available. In addition, it was found that the material deformability provided by the static
tests of elementary block assemblages did not yield the natural frequencies measured experimentally.
Therefore, the calibration of the numerical model with the actual structural frequencies observed was
an essential step to improve its performance in the dynamic runs.

5. Discussion

Discrete element models are a flexible analysis tool for discontinuous media that can be exploited
in many different ways. During model generation, various levels of detail can be introduced, so
that a better resemblance to the real block structure can be progressively achieved by introducing
finer detailing. The new technologies that record accurately the wall morphology make it possible
nowadays. When these are not available, generation methods, such as discussed above, can be
used to create numerical models that match the main patterns and features of the particular type of
masonry under study. The results of the research project reported in the previous section indicate that
a relatively simple block pattern, which did not attempt to reproduce each individual block, was able
to provide a fairly good agreement with the experimental data. More data is required for a refined
model, and higher computational costs are to be expected. Therefore, the need to simplify is obvious.
More research effort needs to be devoted to evaluating the influence of model simplification on the
numerical results, providing guidance for engineering practice.

Pushover analysis provides a powerful tool for seismic assessment. In DE models, the physically
possible failure mechanisms can be viewed and evaluated. The effect of material properties can be
checked by parametric studies, or by using a statistical variation of parameters, with reasonable
computational costs. Time domain dynamic analysis is much more computationally intensive.
The explicit algorithms employed in most DE codes allow a rigorous simulation of the evolving
geometry and contact conditions, but typically require very small time-steps. A key requirement for a
meaningful dynamic analysis of existing structures is a good simulation of the natural frequencies,
as several studies have shown [17,23]. In situ measurements appear, therefore, highly desirable to
guarantee that the numerical model matches the dynamic characteristics of the real structure.

Shake table tests of masonry typically display a significant variability in the results. This has been
observed even for rocking of a single stone block, for which successive tests with the same earthquake
record sometimes varied significantly [26]. For a column of marble drums, a relatively wide range
of responses was also obtained [27]. Large amplitude block rocking is a phenomenon known to be
sensitive to the initial conditions and loading. The change in local contact conditions between blocks
in successive tests, whenever slip takes place, can account for part of these variations. DE models
with slightly different system geometry, properties, or input loads, have also been shown to lead to a
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clear dispersion of the results [3]. From a practical point of view, this sensitivity implies that a single
dynamic analysis is not sufficient, and thus multiple runs, varying the main input parameters of the
model, are always necessary to reach reliable conclusions.

6. Concluding Remarks

Discrete element models are an important tool in the analysis of masonry, given their ability to
reproduce the observed patterns of behavior, particularly failure modes defined by the block structure.
Analysis of masonry structures under intense earthquake loading has been one of the main areas of
application of these models. For a successful application in engineering practice, any numerical tool
needs to prove accurate and robust. Validation studies involving comparisons with shake table tests
or the observed response during earthquakes are fundamental to provide confidence in a numerical
method for seismic assessment studies. Complex models, however, often require data that is not
readily available for existing masonry constructions. Model simplification strategies, whether in
the representation of the block geometry or in the constitutive assumptions, are a key to providing
meaningful results with the existing data in practical situations. The improvement of modeling
procedures remains a major research goal.
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References

1. Lourenço, P.B. Computations of historical masonry constructions. Prog. Struct. Eng. Mater. 2002, 4, 301–319.
[CrossRef]

2. Lemos, J.V. Discrete element modeling of masonry structures. Int. J. Archit. Herit. 2007, 1, 190–213. [CrossRef]
3. Psycharis, I.N.; Lemos, J.V.; Papastamatiou, D.Y.; Zambas, C.; Papantonopoulos, C. Numerical study of

the seismic behaviour of a part of the Parthenon Pronaos. Earthq. Eng. Struct. Dyn. 2003, 32, 2063–2084.
[CrossRef]

4. Mendes, N.; Zanotti, S.; Lemos, J.V. Seismic performance of historical buildings based on discrete element
method: An adobe church. J. Earthq. Eng. 2018. [CrossRef]

5. Cakti, E.; Saygili, O.; Lemos, J.V.; Oliveira, C.S. Discrete element modeling of a scaled masonry structure and
its validation. Eng. Struct. 2016, 126, 224–236. [CrossRef]

6. Godio, M.; Beyer, K. Evaluation of force-based and displacement-based out-of-plane seismic assessment
methods for unreinforced masonry walls through refined model simulations. Earthq. Eng. Struct. Dyn. 2018,
1–22. [CrossRef]

7. Galvez, F.; Sorrentino, L.; Ingham, J.; Dizhur, D. One way bending capacity prediction of unreinforced
masonry walls with varying cross section configurations. In Proceedings of the 10th International Masonry
Conference, Milan, Italy, July 2018; Milani, G., Taliercio, A., Garrity, S., Eds.; The International Masonry
Society: Whyteleafe, UK; pp. 641–653.

8. Malomo, D.; DeJong, M.J.; Penna, A. Distinct element modelling of the in-plane failure mechanisms of URM
walls. In Proceedings of the 10th International Masonry Conference, Milan, Italy, July 2018; Milani, G.,
Taliercio, A., Garrity, S., Eds.; The International Masonry Society: Whyteleafe, UK; pp. 581–594.

9. Casolo, S.; Uva, G. Nonlinear analysis of out-of-plane masonry façades: full dynamic versus pushover
methods by rigid body and spring model. Earthq. Eng. Struct. Dyn. 2018, 42, 499–521. [CrossRef]

10. Malomo, D.; Pinho, R.; Penna, A. Using the applied element method for modelling calcium silicate brick
masonry subjected to in-plane cyclic loading. Earthq. Eng. Struct. Dyn. 2018, 47, 1610–1630. [CrossRef]

11. Garofano, A.; Lestuzzi, P. Seismic Assessment of a Historical Masonry Building in Switzerland: The “Ancien
Hôpital De Sion”. Int. J. Archit. Herit. 2016, 10, 975–992. [CrossRef]

12. Estêvão, J.M.C.; Oliveira, C.S. A new analysis method for structural failure evaluation. Eng. Fail. Anal. 2015,
56, 573–584. [CrossRef]

13. Milani, G.; Lourenço, P.B. 3D non-linear behavior of masonry arch bridges. Comput. Struct. 2012, 110–111,
133–150. [CrossRef]

http://dx.doi.org/10.1002/pse.120
http://dx.doi.org/10.1080/15583050601176868
http://dx.doi.org/10.1002/eqe.315
http://dx.doi.org/10.1080/13632469.2018.1463879
http://dx.doi.org/10.1016/j.engstruct.2016.07.044
http://dx.doi.org/10.1002/eqe.3144
http://dx.doi.org/10.1002/eqe.2224
http://dx.doi.org/10.1002/eqe.3032
http://dx.doi.org/10.1080/15583058.2016.1160303
http://dx.doi.org/10.1016/j.engfailanal.2014.08.009
http://dx.doi.org/10.1016/j.compstruc.2012.07.008


Buildings 2019, 9, 43 11 of 11

14. Chiozzi, A.; Milani, G.; Grillanda, N.; Tralli, A. A fast and general upper-bound limit analysis approach for
out-of-plane loaded masonry walls. Meccanica 2018, 53, 1875–1898. [CrossRef]

15. Itasca. 3DEC—Three-dimensional Distinct Element Code; Version 5.20; Itasca Consulting Group: Minneapolis,
MN, USA, 2017.

16. Sarhosis, V.; Sheng, Y. Identification of material parameters for low bond strength masonry. Eng. Struct. 2014,
60, 100–110. [CrossRef]

17. Lemos, J.V.; Oliveira, C.S.; Navarro, M. 3D nonlinear behavior of an obelisk subjected to the Lorca May 11,
2011 strong motion record. Eng. Fail. Anal. 2015, 58, 212–228. [CrossRef]

18. Mordanova, A.; De Felice, G. Seismic assessment of archaeological heritage using discrete element method.
Int. J. Archit. Herit. 2018. [CrossRef]

19. De Felice, G. Out-of-plane seismic capacity of masonry depending on wall section morphology. Int. J. Archit.
Herit. 2011, 5, 466–482. [CrossRef]

20. Lemos, J.V.; Costa, A.C.; Bretas, E.M. Assessment of the seismic capacity of stone masonry walls with block
models. In Computational Methods in Earthquake Engineering; Papadrakakis, M., Fragiadakis, M., Lagaros, N.D.,
Eds.; Springer: Dordrecht, Netherlands, 2011; pp. 221–235.

21. Candeias, P.X.; Costa, A.C.; Mendes, N.; Costa, A.A.; Lourenço, P.B. Experimental assessment of the -of-plane
performance of masonry buildings through shaking table tests. Int. J. Archit. Herit. 2017, 11, 31–58. [CrossRef]

22. Mendes, N.; Costa, A.A.; Lourenço, P.B.; Bento, R.; Beyer, K.; Felice, G.; Gams, M.; Griffith, M.; Ingham, J.;
Lagomarsino, S.; et al. Methods and approaches for blind test predictions of out-of-plane behavior of
masonry walls: A numerical comparative study. Int. J. Archit. Herit. 2017, 11, 59–71.

23. Lemos, J.V.; Campos Costa, A. Simulation of shake table tests on out-of-plane masonry buildings. Part (V):
Discrete element approach. Int. J. Archit. Herit. 2017, 11, 117–124. [CrossRef]

24. AlShawa, O.; Sorrentino, L.; Liberatore, D. Simulation of shake table tests on out-of-plane masonry buildings.
Part (II): Combined finite-discrete elements. Int. J. Archit. Herit. 2017, 11, 79–83. [CrossRef]

25. Cannizzaro, F.; Lourenço, P.B. Simulation of shake table tests on out-of-plane masonry buildings. Part (VI):
Discrete element approach. Int. J. Archit. Herit. 2017, 11, 125–142. [CrossRef]

26. Peña, F.; Prieto, F.; Lourenço, P.B.; Campos Costa, A.; Lemos, J.V. On the dynamics of rocking motion of
single rigid-block structures. Earthq. Eng. Struct. Dyn. 2017, 36, 2383–2399. [CrossRef]

27. Papantonopoulos, C.; Psycharis, I.N.; Papastamatiou, D.Y.; Lemos, J.V.; Mouzakis, H. Numerical prediction
of the earthquake response of classical columns using the distinct element method. Earthq. Eng Struct. Dyn.
2002, 31, 1699–1717. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11012-017-0637-x
http://dx.doi.org/10.1016/j.engstruct.2013.12.013
http://dx.doi.org/10.1016/j.engfailanal.2015.09.001
http://dx.doi.org/10.1080/15583058.2018.1543482
http://dx.doi.org/10.1080/15583058.2010.530339
http://dx.doi.org/10.1080/15583058.2016.1238975
http://dx.doi.org/10.1080/15583058.2016.1237587
http://dx.doi.org/10.1080/15583058.2016.1237588
http://dx.doi.org/10.1080/15583058.2016.1238973
http://dx.doi.org/10.1002/eqe.739
http://dx.doi.org/10.1002/eqe.185
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Essential Concepts in Discrete Element Modeling 
	Block Representation 
	Contact between Blocks 
	Solution Methods and Computational Efficiency 
	Material Properties 

	Representation of the Block Structure 
	Modeling the Masonry Morphology 
	Regular and Voronoi Block Patterns 
	Irregular Coursed Block Patterns 

	DEM Analysis of a Shaking Table Test of a Stone Masonry Model 
	Experimental study 
	DE Representation of the Stone Masonry Test Model 
	Material Properties 
	Pushover and Dynamic Analyses 

	Discussion 
	Concluding Remarks 
	References

