Fatigue Behavior of PBO FRCM Composite Applied to Concrete Substrate
Abstract
:1. Introduction
2. Fatigue Strengthening of RC Beam with FRCM Composites: State of the Art
2.1. Database of Existing Results
2.2. Discussion of Existing Results
3. Experimental Program
Specimen Geometry and Materials
4. Quasi-Static Monotonic Tests
5. Fatigue Tests
6. Conclusions
- The fiber reinforcement ratio βf has an important role in the fatigue life of FRCM-strengthened RC beams due to its influence on the composite (debonding) failure mode. As a consequence, high reinforcement ratios did not provide significant increase in the specimen fatigue life due to the attainment of the composite bond capacity.
- The quasi-static monotonic modified beam tests failed due to debonding at the matrix-fiber interface and, in one case, rupture of the fiber filaments, which was attributed to the presence of a stress component normal to the fiber textile plane that damaged the fiber filaments.
- The fatigue modified beam tests failed due to rupture of the fiber filaments with a number of cycles at failure between 0.20 × 106 cycles and 1.22 × 106 cycles. The failure mode did not allow verification of whether the progressive matrix-fiber debonding or damage of the fiber was mainly responsible for the progressive degradation of the specimen stiffness.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pino, V.; Akbari Hadad, H.; De Caso y Basalo, F.; Nanni, A.; Ali Ebead, U.; El Refai, A. Performance of FRCM-Strengthened RC Beams Subject to Fatigue. J. Bridge Eng. 2017, 22, 04017079. [Google Scholar] [CrossRef]
- Herbrand, M.; Adam, V.; Classen, M.; Kueres, D.; Hegger, J. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar. Materials 2017, 10, 1099. [Google Scholar] [CrossRef] [Green Version]
- Carloni, C.; Subramaniam, K.; Savoia, M.; Mazzotti, C. Experimental determination of FRP—Concrete cohesive interface properties under fatigue loading. Compos. Struct. 2012, 94, 1288–1296. [Google Scholar] [CrossRef]
- Ekenel, M.; Myers, J.J. Fatigue Performance of CFRP Strengthened RC Beams under Environmental Conditioning and Sustained Load. J. Compos. Constr. 2009, 13, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Del Prete, I.; Bilotta, A.; Nigro, E. Performances at high temperature of RC bridge decks strengthened with EBR-FRP. Compos. Part B Eng. 2015, 68, 27–37. [Google Scholar] [CrossRef]
- Ombres, L.; Iorfida, A.; Mazzuca, S.; Verre, S. Bond analysis of thermally conditioned FRCM-masonry joints. Meas. J. Int. Meas. Confed. 2018, 125, 509–515. [Google Scholar] [CrossRef]
- American Concrete Institute. Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures; ACI 549.4R-13; ACI: Farmington Hills, MI, USA, 2013. [Google Scholar]
- Ombres, L.; Verre, S. Flexural Strengthening of RC Beams with Steel-Reinforced Grout: Experimental and Numerical Investigation. J. Compos. Constr. 2019, 23, 04019035. [Google Scholar] [CrossRef]
- D’Ambrisi, A.; Focacci, F. Flexural Strengthening of RC Beams with Cement-Based Composites. J. Compos. Constr. 2011, 15, 707–720. [Google Scholar] [CrossRef]
- Escrig, C.; Gil, L.; Bernat-Maso, E. Experimental comparison of reinforced concrete beams strengthened against bending with different types of cementitious-matrix composite materials. Constr. Build. Mater. 2017, 137, 317–329. [Google Scholar] [CrossRef]
- Park, J.; Park, S.-K.; Hong, S. Experimental study of flexural behavior of reinforced concrete beam strengthened with prestressed textile-reinforced mortar. Materials 2020, 13, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Antino, T.; Focacci, F.; Sneed, L.H.; Pellegrino, C. Shear strength model for RC beams with U-wrapped FRCM composites. J. Compos. Constr. 2020, 24. [Google Scholar] [CrossRef]
- Blanksvärd, T.; Täljsten, B.; Carolin, A. Shear strengthening of concrete structures with the use of mineral-based composites. J. Compos. Constr. 2009, 13, 25–34. [Google Scholar] [CrossRef]
- Tetta, Z.C.; Koutas, L.N.; Bournas, D.A. Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. Compos. Part B Eng. 2015, 77, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Trapko, T. Stress-Strain model for FRCM confined concrete elements. Compos. Part B Eng. 2013, 45, 1351–1359. [Google Scholar] [CrossRef]
- Di Ludovico, M.; Prota, A.; Manfredi, G. Structural upgrade using basalt fibers for concrete confinement. J. Compos. Constr. 2010, 14, 541–552. [Google Scholar] [CrossRef]
- Cascardi, A.; Longo, F.; Micelli, F.; Aiello, M.A. Compressive strength of confined column with Fiber Reinforced Mortar (FRM): New design-oriented-models. Constr. Build. Mater. 2017, 156, 387–401. [Google Scholar] [CrossRef]
- Cascardi, A.; Aiello, M.A.; Triantafillou, T. Analysis-oriented model for concrete and masonry confined with fiber reinforced mortar. Mater. Struct. 2017, 50, 202. [Google Scholar] [CrossRef]
- Trapko, T.; Musiał, M. Effect of PBO—FRCM Reinforcement on Stiffness of Eccentrically Compressed Reinforced Concrete Columns. Materials 2020, 13, 1221. [Google Scholar] [CrossRef] [Green Version]
- Bilotta, A.; Lignola, G.P. Effects of Defects on Bond Behavior of Fiber Reinforced Cementitious Matrix Materials. Materials 2020, 13, 164. [Google Scholar] [CrossRef] [Green Version]
- Raoof, S.M.; Koutas, L.N.; Bournas, D.A. Bond between textile-reinforced mortar (TRM) and concrete substrates: Experimental investigation. Compos. Part B Eng. 2016, 98, 350–361. [Google Scholar] [CrossRef]
- D’Ambrisi, A.; Feo, L.; Focacci, F. Bond-slip relations for PBO-FRCM materials externally bonded to concrete. Compos. Part B Eng. 2012, 43, 2938–2949. [Google Scholar] [CrossRef]
- Calabrese, A.S.; Colombi, P.; D’Antino, T. A Bending Test Set-Up for the Investigation of the Bond Properties of FRCM Strengthenings Applied to Masonry Substrates. Key Eng. Mater. 2019. [Google Scholar] [CrossRef]
- Calabrese, A.S.; D’Antino, T.; Colombi, P.; Poggi, C. Study of the influence of interface normal stresses on the bond behavior of FRCM composites using direct shear and modified beam tests. Constr. Build. Mater. 2020. accepted. [Google Scholar]
- Falope, F.O.; Lanzoni, L.; Tarantino, A.M. Modified hinged beam test on steel fabric reinforced cementitious matrix (SFRCM). Comp. Part B Eng. 2018, 146, 232–243. [Google Scholar] [CrossRef]
- Alecci, V.; Focacci, F.; Rovero, L.; Stipo, G.; De Stefano, M. Extrados strengthening of brick masonry arches with PBO—FRCM composites: Experimental and analytical investigations. Compos. Struct. 2016, 149, 184–196. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Design and Construction of Externally Bonded Fibre Reinforced Inorganic Matrix Systems for Strengthening Existing Structures; CNR-DT 215/2018; CNR: Rome, Italy, 2018. [Google Scholar]
- American Concrete Institute. Guide to Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures; ACI 440.2R-17; ACI: Farmington Hills, MI, USA, 2017. [Google Scholar]
- D’Antino, T.; Focacci, F.; Carloni, C.; Sneed, L.H. Relationship between the effective strain of FRCM-strengthened RC beams and the debonding strain of direct shear tests. Eng. Struct. 2020. [Google Scholar] [CrossRef]
- D’Antino, T.; Carloni, C.; Sneed, L.H.; Pellegrino, C. Fatigue and post-fatigue behavior of PBO FRCM-concrete joints. Int. J. Fatigue 2015, 81, 91–104. [Google Scholar] [CrossRef]
- American Concrete Institute 215R-92. Considerations for Design of Concrete Structures Subjected to Fatigue Loading. ACI J. 1974, 71, 97–120. [Google Scholar]
- European Committee for Standardization. Eurocode 2: Design of concrete structures. In Part 1-1: General Rules and Rules for Buildings; CEN: Brussels, Belgium, 2004. [Google Scholar]
- Moore, H.F.B.; Kommers, J.B.B. The Fatigue of Metals; Franklin Classics Trade Pr: New York City, NY, USA, 1927; ISBN 978-0-353-24514-3. [Google Scholar]
- Yi, W.; Kunnath, S.; Sun, X.; Shi, C.; Tang, F. Fatigue Behavior of Reinforced Concrete Beams with Corroded Steel Reinforcement. ACI Struct. J. 2010, 107, 107. [Google Scholar]
- Jie, S.; Shi-ping, Y.; Fei, W.; Yang, Y. Experimental study on the fatigue behaviour of RC beams strengthened with TRC after sustained load corrosion. Constr. Build. Mater. 2017, 131, 713–720. [Google Scholar] [CrossRef]
- Wiberg, A. Strengthening of Concrete Beams Using Cementitious Carbon Fibre Composites. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2003. [Google Scholar]
- Curbach, M.; Ortlepp, R.; Triantafillou, T.C. TRC for rehabilitation. In Textile Reinforced Concrete: State of the Art Report, RILEM TC 201-TRC; Brameshuber, W., Ed.; RILEM: Paris, France, 2006; pp. 221–236. [Google Scholar]
- Akbari Hadad, H.; Nanni, A.; Ebead, U.A.; El Refai, A. Static and Fatigue Performance of FRCM-Strengthened Concrete Beams. J. Compos. Constr. 2018, 22, 04018033. [Google Scholar] [CrossRef]
- Aljazaeri, Z.R.; Myers, J.J. Fatigue and Flexural Behavior of Reinforced-Concrete Beams Strengthened with Fiber-Reinforced Cementitious Matrix. J. Compos. Constr. 2017, 21, 04016075. [Google Scholar] [CrossRef]
- Elghazy, M.; El Refai, A.; Ebead, U.; Nanni, A. Fatigue and Monotonic Behaviors of Corrosion-Damaged Reinforced Concrete Beams Strengthened with FRCM Composites. J. Compos. Constr. 2018, 22, 04018040. [Google Scholar] [CrossRef]
- Arboleda, D.; Carozzi, F.G.; Nanni, A.; Poggi, C. Testing procedures for the uniaxial tensile characterization of fabric-reinforced cementitious matrix composites. J. Compos. Constr. 2016, 20. [Google Scholar] [CrossRef]
- D’Antino, T.; Poggi, C. Stress redistribution in glass fibers of G-FRCM composites. Key Eng. Mater. 2019. [Google Scholar] [CrossRef]
- Signorini, C.; Nobili, A.; Sola, A.; Messori, M. Designing epoxy viscosity for optimal mechanical performance of coated Glass Textile Reinforced Mortar (GTRM) composites. Constr. Build. Mater. 2020, 233, 117325. [Google Scholar] [CrossRef]
- Carloni, C.; Santandrea, M.; Imohamed, I.A.O. Determination of the interfacial properties of SRP strips bonded to concrete and comparison between single-lap and notched beam tests. Eng. Fract. Mech. 2017, 186, 80–104. [Google Scholar] [CrossRef]
- Rilem TC 9-RC Bond test for reinforcement steel. 1. Beam test, 1982. In RILEM Technical Recommendations for the Testing and Use of Construction Materials; CRC Press: Boca Raton, FL, USA, 1994; ISBN 978-1-4822-7136-2.
- De Lorenzis, L.; Miller, B.; Nanni, A. Bond of FRP laminates to concrete. ACI Mater. J. 2001, 98, 256–264. [Google Scholar]
- Kotynia, R. Bond between FRP and concrete in reinforced concrete beams strengthened with near surface mounted and externally bonded reinforcement. Constr. Build. Mater. 2012, 32, 41–54. [Google Scholar] [CrossRef]
- D’Antino, T.; Carloni, C.; Sneed, L.H.; Pellegrino, C. Matrix-fiber bond behavior in PBO FRCM composites: A fracture mechanics approach. Eng. Fract. Mech. 2014, 117, 94–111. [Google Scholar] [CrossRef]
- CSLP—Servizio Tecnico Centrale. Linee Guida Per la Identificazione, la Qualificazione ed il Controllo di Accettazione di Compositi Fibrorinforzati a Matrice Inorganica (FRCM) da Utilizzarsi Per il Consolidamento Strutturale di Costruzioni esistenti; Consiglio Nazionale delle Ricerche (CNR): Rome, Italy, 2019.
- International Code Council Evaluation Service (ICC-ES). Acceptance Criteria for Masonry and Concrete Strengthening Using Fabric-Reinforced Cementitious Matrix (FRCM) and Steel Reinforced Grout (SRG) Composite Systems. AC434; International Code Council Evaluation Service: Whittier, CA, USA, 2018. [Google Scholar]
- Focacci, F.; D’antino, T.; Carloni, C. Analytical modelling of the tensile response of PBO-FRCM composites. Lect. Notes Mech. Eng. 2020, 527–536. [Google Scholar] [CrossRef]
- Calabrese, A.S.; Colombi, P.; D’Antino, T. Analytical solution of the bond behavior of FRCM composites using a rigid-softening cohesive material law. Compos. Part B Eng. 2019, 174, 107051. [Google Scholar] [CrossRef]
- Calabrese, A.S.; D’Antino, T.; Colombi, P.; Poggi, C. Study of the bond behavior of FRCM-masonry joints using a modified beam test. Lect. Notes Mech. Eng. 2020, 455–471. [Google Scholar] [CrossRef]
- Calabrese, A.S.; D’Antino, T.; Colombi, P.; Poggi, C.; Carloni, C. Influence of the test set-up on the bond behavior of FRCM composites. ACI Spec. Publ. 2020. under review. [Google Scholar]
Reference | Set-Up | RC Beam | FRCM | |||||||
---|---|---|---|---|---|---|---|---|---|---|
lb (mm) | lk (mm) | L (mm) | w (mm) | H (mm) | D (mm) | Ac (mm2) | At (mm2) | lf (mm) | wf (mm) | |
[35] | 2200 | 800 | 2400 | 120 | 230 | 205 | 101 | 308 | 2000 | 120 |
[39] | 2032 | 254 | 2133 | 203 | 305 | 268 | 157 | 236 | 1880 | 203 |
[40] | 2560 | 800 | 2800 | 2345 | 250 | 225 | 101 | 402 | 2400 | 150 |
[1] | 1524 | 0 | 1829 | 2972 | 305 | 268 | 142 | 213 | 1524 | 152 |
[38] | 1524 | 0 | 1829 | 2345 | 305 | 268 | 142 | 213 | 1524 | 152 |
Ref. | Specimen | FRCM | Ef (GPa) | Af (mm2) | βf (%) | Corr | Pi/Pu | Smin/Pu (%) | Smax/Pu (%) | F (Hz) | NF (104) | (%) | FM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[35] | H2 | control | - | - | - | Y | 0.2 | 20 | 70 | 3 | 27.9 | - | - |
H3 | C | 80 ‡ | 9.00 | 2.9 | Y | 0.2 | 20 | 70 | 3 | 33.7 | 1.25 | a + c | |
H4 | C | 80 ‡ | 9.00 | 2.9 | Y | 0.4 | 20 | 70 | 3 | 88.4 | 3.28 | a + c | |
H5 | C | 80 ‡ | 9.00 | 2.9 | Y | 0.6 | 20 | 70 | 3 | 60.0 | 2.22 | a + c | |
H6 | control | - | - | - | - | - | 20 | 70 | 3 | 31.5 | - | - | |
H7 | C | 80 ‡ | 9.00 | 2.9 | - | - | 20 | 70 | 3 | 41.5 | 1.32 | a + c | |
[39] | B1-0 | control | - | - | - | - | - | 16 | 32 | 5 | 200.0 | - | - |
B3-1 | PBO | 127 | 11.28 | 3.3 | - | - | 16 | 32 | 5 | 200.0 | 1.00 | > | |
B4-1 | PBO | 127 | 11.28 | 3.3 | Y | - | 16 | 32 | 5 | 200.0 | 1.00 | > | |
B5-1 | PBO | 127 | 11.28 | 3.3 | Y | 0.4 | 16 | 32 | 5 | 200.0 | 1.00 | > | |
B6-4 | PBO | 127 | 45.12 | 3.3 | - | - | 20 | 40 | 5 | 200.0 | 1.00 | > | |
B7-4 | PBO | 127 | 45.12 | 3.3 | Y | - | 20 | 40 | 5 | 200.0 | 1.00 | > | |
B8-4 | PBO | 127 | 45.12 | 3.3 | Y | 0.4 | 20 | 40 | 5 | 200.0 | 1.00 | > | |
[40] | FCU | control | - | - | - | - | - | 21 | 60 | 2 | 39.6 | - | - |
FCS-2P-I | PBO | 121 | 15.00 | 2.5 | Y | - | 21 | 60 | 2 | 54.5 | 1.38 | b | |
FCS-4P-I | PBO | 121 | 30.00 | 5.0 | Y | - | 21 | 60 | 2 | 98.4 | 2.49 | b | |
FCS-4P-II | PBO | 121 | 30.00 | 5.0 | Y | - | 21 | 60 | 2 | 149.3 | 3.77 | b | |
FCS-3C-II | C | 75 | 70.65 | 7.3 | Y | - | 21 | 60 | 2 | 83.4 | 2.11 | b | |
[1] | F-CON-0-75a | control | - | - | - | - | - | 13 | 48 | 2 | 91.9 | - | - |
F-FRCM-3P-90 | PBO | 128 | 20.98 | 5.5 | - | - | 11 | 49 | 2 | 49.2 | 0.54 | b | |
F-FRCM-3P-85 | PBO | 128 | 20.98 | 5.5 | - | - | 11 | 46 | 2 | 56.2 | 0.61 | b | |
F-FRCM-3P-80a | PBO | 128 | 20.98 | 5.5 | - | - | 11 | 44 | 2 | 200.0 | 2.18 | > | |
F-FRCM-3P-80b | PBO | 128 | 20.98 | 5.5 | - | - | 11 | 44 | 2 | 189.0 | 2.06 | b | |
F-FRCM-3P-75a | PBO | 128 | 20.98 | 5.5 | - | - | 11 | 41 | 2 | 200.0 | 2.18 | > | |
F-FRCM-3P-75b | PBO | 128 | 20.98 | 5.5 | - | - | 11 | 41 | 2 | 200.0 | 2.18 | > | |
F-FRCM-1P-75 | PBO | 128 | 7.00 | 1.8 | - | - | 12 | 50 | 2 | 96.2 | 1.05 | a | |
F-FRCM-5P-75 | PBO | 128 | 34.96 | 9.2 | - | - | 15 | 46 | 2 | 200.0 | 2.18 | > | |
[38] | F-CON-75 | control | - | - | - | - | - | 14 | 51 | 2 | 82.4 | - | - |
F-C200-75 | C | 65 | 13.38 | 1.8 | - | - | 13 | 49 | 2 | 133.4 | 1.62 | a | |
F-C200-70 | C | 65 | 13.38 | 1.8 | - | - | 13 | 45 | 2 | 123.1 | 1.49 | a | |
F-C200-65 | C | 65 | 13.38 | 1.8 | - | - | 13 | 42 | 2 | 200.0 | 2.43 | > | |
F-C200-60 | C | 65 | 13.38 | 1.8 | - | - | 13 | 39 | 2 | 200.0 | 2.43 | > | |
F-C600-75 | C | 64 | 47.73 | 6.4 | - | - | 11 | 41 | 2 | 152.6 | 1.85 | b | |
F-C600-70 | C | 64 | 47.73 | 6.4 | - | - | 11 | 38 | 2 | 195.9 | 2.38 | b | |
F-C600-65 | C | 64 | 47.73 | 6.4 | - | - | 11 | 35 | 2 | 200.0 | 2.43 | > |
Specimen | Bonded Length † (mm) | Bonded Width (mm) | σ* (MPa) | σf (MPa) |
---|---|---|---|---|
MB_300_60_B_1 | 300 | 60 | 2220 | 199 |
MB_300_60_B_2 | 300 | 60 | 2124 | 481 |
MB_300_60_B_3 | 300 | 60 | 2135 | 430 |
Average | 2160 | 370 | ||
CoV (%) | 2.42 | 40.6 |
Specimen | Bonded Length † (mm) | Bonded Width (mm) | σmin (MPa) | σmax (MPa) | NF (106) |
---|---|---|---|---|---|
MB_300_60_B_F_1 | 300 | 60 | 550 | 1050 | 0.20 |
MB_300_60_B_F_2 | 300 | 60 | 550 | 1050 | 0.47 |
MB_300_60_B_F_3 | 300 | 60 | 550 | 1050 | 1.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calabrese, A.S.; D’Antino, T.; Colombi, P.; Carloni, C.; Poggi, C. Fatigue Behavior of PBO FRCM Composite Applied to Concrete Substrate. Materials 2020, 13, 2368. https://doi.org/10.3390/ma13102368
Calabrese AS, D’Antino T, Colombi P, Carloni C, Poggi C. Fatigue Behavior of PBO FRCM Composite Applied to Concrete Substrate. Materials. 2020; 13(10):2368. https://doi.org/10.3390/ma13102368
Chicago/Turabian StyleCalabrese, Angelo Savio, Tommaso D’Antino, Pierluigi Colombi, Christian Carloni, and Carlo Poggi. 2020. "Fatigue Behavior of PBO FRCM Composite Applied to Concrete Substrate" Materials 13, no. 10: 2368. https://doi.org/10.3390/ma13102368
APA StyleCalabrese, A. S., D’Antino, T., Colombi, P., Carloni, C., & Poggi, C. (2020). Fatigue Behavior of PBO FRCM Composite Applied to Concrete Substrate. Materials, 13(10), 2368. https://doi.org/10.3390/ma13102368